

Bringing Web-Scale Networking
to Enterprise Cloud

Economical scalability
Built for the automation age

Standardized toolsets
Choice and flexibility

cumulusnetworks.com/oreilly
Learn more at

App App App

Network OS

Open Hardware

Cumulus Linux

VSLocked, proprietary
systems

Customer choice

Third party apps Cumulus apps

NetQ

Dinesh G. Dutt

BGP in the Data Center

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-98338-6

[LSI]

BGP in the Data Center
by Dinesh G. Dutt

Copyright © 2017 O’Reilly Media, Inc.. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Courtney Allen and
Virginia Wilson
Production Editor: Kristen Brown
Copyeditor: Octal Publishing, Inc.

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2017: First Edition

Revision History for the First Edition
2017-06-19: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. BGP in the Data
Center, the cover image, and related trade dress are trademarks of O’Reilly Media,
Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://oreilly.com/safari

Table of Contents

Preface. vii

1. Introduction to Data Center Networks. 1
Requirements of a Data Center Network 2
Clos Network Topology 4
Network Architecture of Clos Networks 8
Server Attach Models 10
Connectivity to the External World 11
Support for Multitenancy (or Cloud) 12
Operational Consequences of Modern Data Center Design 13
Choice of Routing Protocol 14

2. How BGP Has Been Adapted to the Data Center. 15
How Many Routing Protocols? 16
Internal BGP or External BGP 16
ASN Numbering 17
Best Path Algorithm 21
Multipath Selection 22
Slow Convergence Due to Default Timers 24
Default Configuration for the Data Center 25
Summary 26

3. Building an Automatable BGP Configuration. 27
The Basics of Automating Configuration 27
Sample Data Center Network 28
The Difficulties in Automating Traditional BGP 29
Redistribute Routes 34

v

Routing Policy 36
Using Interface Names as Neighbors 42
Summary 45

4. Reimagining BGP Configuration. 47
The Need for Interface IP Addresses and remote-as 48
The Numbers on Numbered Interfaces 48
Unnumbered Interfaces 50
BGP Unnumbered 50
A remote-as By Any Other Name 58
Summary 59

5. BGP Life Cycle Management. 61
Useful show Commands 61
Connecting to the Outside World 66
Scheduling Node Maintenance 68
Debugging BGP 69
Summary 71

6. BGP on the Host. 73
The Rise of Virtual Services 73
BGP Models for Peering with Servers 75
Routing Software for Hosts 79
Summary 80

vi | Table of Contents

Preface

This little booklet is the outcome of the questions I’ve frequently
encountered in my engagement with various customers, big and
small, in their journey to build a modern data center.

BGP in the data center is a rather strange beast, a little like the title
of that Sting song, “An Englishman in New York.” While its entry
into the data center was rather unexpected, it has swiftly asserted
itself as the routing protocol of choice in data center deployments.

Given the limited scope of a booklet like this, the goals of the book
and the assumptions about the audience are critical. The book is
designed for network operators and engineers who are conversant in
networking and the basic rudiments of BGP, and who want to
understand how to deploy BGP in the data center. I do not expect
any advanced knowledge of BGP’s workings or experience with any
specific router platform.

The primary goal of this book is to gather in a single place the
theory and practice of deploying BGP in the data center. I cover the
design and effects of a Clos topology on network operations before
moving on to discuss how to adapt BGP to the data center. Two
chapters follow where we’ll build out a sample configuration for a
two-tier Clos network. The aim of this configuration is to be simple
and automatable. We break new ground in these chapters with ideas
such as BGP unnumbered. The book finishes with a discussion of
deploying BGP on servers in order to deal with the buildout of
microservices applications and virtual firewall and load balancer
services. Although I do not cover the actual automation playbooks
in this book, the accompanying software on GitHub will provide a
virtual network on a sturdy laptop for you to play with.

vii

The people who really paid the price, as I took on the writing of this
booklet along with my myriad other tasks, were my wife Shanthala
and daughter Maya. Thank you. And it has been nothing but a
pleasure and a privilege to work with Cumulus Networks’ engineer‐
ing, especially the routing team, in developing and working through
ideas to make BGP simpler to configure and manage.

Software Used in This Book
There are many routing suites available today, some vendor-
proprietary and others open source. I’ve picked the open source
FRRouting routing suite as the basis for my configuration samples.
It implements many of the innovations discussed in this book. For‐
tunately, its configuration language mimics that of many other tradi‐
tional vendor routing suites, so you can translate the configuration
snippets easily into other implementations.

The automation examples listed on the GitHub page all use Ansible
and Vagrant. Ansible is a popular, open source server automation
tool that is very popular with network operators due to its simple,
no-programming-required model. Vagrant is a popular open source
tool used to spin up networks on a laptop using VM images of
router software.

viii | Preface

https://frrouting.org/
https://github.com/oreillymedia/bgp_in_the_data_center

CHAPTER 1

Introduction to Data Center
Networks

A network exists to serve the connectivity requirements of applica‐
tions, and applications serve the business needs of their organiza‐
tion. As a network designer or operator, therefore, it is imperative to
first understand the needs of the modern data center, and the net‐
work topology that has been adapted for the data centers. This is
where our journey begins. My goal is for you to understand, by the
end of the chapter, the network design of a modern data center net‐
work, given the applications’ needs and the scale of the operation.

Data centers are much bigger than they were a decade ago, with
application requirements vastly different from the traditional client–
server applications, and with deployment speeds that are in seconds
instead of days. This changes how networks are designed and
deployed.

The most common routing protocol used inside the data center is
Border Gateway Protocol (BGP). BGP has been known for decades
for helping internet-connected systems around the world find one
another. However, it is useful within a single data center, as well.
BGP is standards-based and supported by many free and open
source software packages.

It is natural to begin the journey of deploying BGP in the data center
with the design of modern data center networks. This chapter is an
answer to questions such as the following:

1

• What are the goals behind a modern data center network
design?

• How are these goals different from other networks such as
enterprise and campus?

• Why choose BGP as the routing protocol to run the data center?

Requirements of a Data Center Network
Modern data centers evolved primarily from the requirements of
web-scale pioneers such as Google and Amazon. The applications
that these organizations built—primarily search and cloud—repre‐
sent the third wave of application architectures. The first two waves
were the monolithic single-machine applications, and the client–
server architecture that dominated the landscape at the end of the
past century.

The three primary characteristics of this third-wave of applications
are as follows:

Increased server-to-server communication
Unlike client–server architectures, the modern data center
applications involve a lot of server-to-server communication.
Client–server architectures involved clients communicating
with fairly monolithic servers, which either handled the request
entirely by themselves, or communicated in turn to at most a
handful of other servers such as database servers. In contrast, an
application such as search (or its more popular incarnation,
Hadoop), can employ tens or hundreds of mapper nodes and
tens of reducer nodes. In a cloud, a customer’s virtual machines
(VMs) might reside across the network on multiple nodes but
need to communicate seamlessly. The reasons for this are var‐
ied, from deploying VMs on servers with the least load to
scaling-out server load, to load balancing. A microservices
architecture is another example in which there is increased
server-to-server communication. In this architecture, a single
function is decomposed into smaller building blocks that com‐
municate together to achieve the final result. The promise of
such an architecture is that each block can therefore be used in
multiple applications, and each block can be enhanced, modi‐
fied, and fixed more easily and independently from the other

2 | Chapter 1: Introduction to Data Center Networks

blocks. Server-to-server communications is often called East-
West traffic, because diagrams typically portray servers side-by-
side. In contrast, traffic exchanged between local networks and
external networks is called North-South traffic.

Scale
If there is one image that evokes a modern data center, it is the
sheer scale: rows upon rows of dark, humming, blinking
machines in a vast room. Instead of a few hundred servers that
represented a large network in the past, modern data centers
range from a few hundred to a hundred thousand servers in a
single physical location. Combined with increased server-to-
server communication, the connectivity requirements at such
scales force a rethink of how such networks are constructed.

Resilience
Unlike the older architectures that relied on a reliable network,
modern data center applications are designed to work in the
presence of failures—nay, they assume failures as a given. The
primary aim is to limit the effect of a failure to as small a foot‐
print as possible. In other words, the “blast radius” of a failure
must be constrained. The goal is an end-user experience mostly
unaffected by network or server failures.

Any modern data center network has to satisfy these three basic
application requirements. Multitenant networks such as public or
private clouds have an additional consideration: rapid deployment
and teardown of a virtual network. Given how quickly VMs—and
now containers—can spin up and tear down, and how easily a cus‐
tomer can spin up a new private network in the cloud, the need for
rapid deployment becomes obvious.

The traditional network design scaled to support more devices by
deploying larger switches (and routers). This is the scale-in model of
scaling. But these large switches are expensive and mostly designed
to support only a two-way redundancy. The software that drives
these large switches is complex and thus prone to more failures than
simple, fixed-form factor switches. And the scale-in model can scale
only so far. No switch is too large to fail. So, when these larger
switches fail, their blast radius is fairly large. Because failures can be
disruptive if not catastrophic, the software powering these “god-
boxes” try to reduce the chances of failure by adding yet more com‐
plexity; thus they counterproductively become more prone to failure

Requirements of a Data Center Network | 3

as a result. And due to the increased complexity of software in these
boxes, changes must be slow to avoid introducing bugs into hard‐
ware or software.

Rejecting this paradigm that was so unsatisfactory in terms of relia‐
bility and cost, the web-scale pioneers chose a different network
topology to build their networks.

Clos Network Topology
The web-scale pioneers picked a network topology called Clos to
fashion their data centers. Clos networks are named after their
inventor, Charles Clos, a telephony networking engineer, who, in the
1950s, was trying to solve a problem similar to the one faced by the
web-scale pioneers: how to deal with the explosive growth of tele‐
phone networks. What he came up with we now call the Clos net‐
work topology or architecture.

Figure 1-1 shows a Clos network in its simplest form. In the dia‐
gram, the green nodes represent the switches and the gray nodes the
servers. Among the green nodes, the ones at the top are spine nodes,
and the lower ones are leaf nodes. The spine nodes connect the leaf
nodes with one another, whereas the leaf nodes are how servers con‐
nect to the network. Every leaf is connected to every spine node,
and, obviously, vice versa. C’est tout!

Figure 1-1. A simple two-tier Clos network

Let’s examine this design in a little more detail. The first thing to
note is the uniformity of connectivity: servers are typically three
network hops away from any other server. Next, the nodes are quite
homogeneous: the servers look alike, as do the switches. As required
by the modern data center applications, the connectivity matrix is
quite rich, which allows it to deal gracefully with failures. Because

4 | Chapter 1: Introduction to Data Center Networks

there are so many links between one server and another, a single
failure, or even multiple link failures, do not result in complete con‐
nectivity loss. Any link failure results only in a fractional loss of
bandwidth as opposed to a much larger, typically 50 percent, loss
that is common in older network architectures with two-way redun‐
dancy.

The other consequence of having many links is that the bandwidth
between any two nodes is quite substantial. The bandwidth between
nodes can be increased by adding more spines (limited by the
capacity of the switch).

We round out our observations by noting that the endpoints are all
connected to leaves, and that the spines merely act as connectors. In
this model, the functionality is pushed out to the edges rather than
pulled into the spines. This model of scaling is called a scale-out
model.

You can easily determine the number of servers that you can con‐
nect in such a network, because the topology lends itself to some
simple math. If we want a nonblocking architecture—i.e., one in
which there’s as much capacity going between the leaves and the
spines as there is between the leaves and the servers—the total num‐
ber of servers that can be connected is n2 / 2, where n is the number
of ports in a switch. For example, for a 64-port switch, the number
of servers that you can connect is 64 * 64 / 2 = 2,048 servers. For a
128-port switch, the number of servers jumps to 128 * 128 / 2 =
8,192 servers. The general equation for the number of servers that
can be connected in a simple leaf-spine network is n * m / 2, where n
is the number of ports on a leaf switch, and m is the number of ports
on a spine switch.

In reality, servers are interconnected to the leaf via lower-speed links
and the switches are interconnected by higher-speed links. A com‐
mon deployment is to interconnect servers to leaves via 10 Gbps
links, while interconnecting switches with one another via 40 Gbps
links. Given the rise of 100 Gbps links, an up-and-coming deploy‐
ment is to use 25 Gbps links to interconnect servers to leaves, and
100 Gbps links to interconnect the switches.

Due to power restrictions, most networks have at most 40 servers in
a single rack (though new server designs are pushing this limit). At
the time of this writing, the most common higher-link speed
switches have at most 32 ports (each port being either 40 Gbps or

Clos Network Topology | 5

100 Gbps). Thus, the maximum number of servers that you can
pragmatically connect with a simple leaf–spine network is 40 * 32 =
1,280 servers. However, 64-port and 128-port versions are expected
soon.

Although 1,280 servers is large enough for most small to middle
enterprises, how does this design get us to the much-touted tens of
thousands or hundreds of thousands of servers?

Three-Tier Clos Networks
Figure 1-2 depicts a step toward solving the scale-out problem
defined in the previous section. This is what is called a three-tier Clos
network. It is just a bunch of leaf–spine networks—or two-tier Clos
networks—connected by another layer of spine switches. Each two-
tier network is called a pod or cluster, and the third tier of spines
connecting all the pods is called an interpod spine or intercluster
spine layer. Quite often, the first tier of switches, the ones servers
connect to, are called top-of-rack (ToR) because they’re typically
placed at the top of each rack; the next tier of switches, are called
leaves, and the final tier of switches, the ones connecting the pods,
are called spines.

Figure 1-2. Three-tier Clos network

In such a network, assuming that the same switches are used at
every tier, the total number of servers that you can connect is n3 / 4.
Assuming 64-port switches, for example, we get 643 / 4 = 65,536
servers. Assuming the more realistic switch port numbers and
servers per rack from the previous section, we can build 40 * 16 * 16
= 10,240 servers.

Large-scale network operators overcome these port-based limita‐
tions in one of two ways: they either buy large chassis switches for
the spines or they break out the cables from high-speed links into

6 | Chapter 1: Introduction to Data Center Networks

multiple lower-speed links, and build equivalent capacity networks
by using multiple spines. For example, a 32-port 40 Gbps switch can
typically be broken into a 96-port 10 Gbps switch. This means that
the number of servers that can be supported now becomes 40 * 48 *
96 = 184,320. A 32-port 100 Gbps switch can typically be broken out
into 128 25 Gbps links, with an even higher server count: 40 * 64 *
128 = 327,680. In such a three-tier network, every ToR is connected
to 64 leaves, with each leaf being connected to 64 spines.

This is fundamentally the beauty of a Clos network: like fractal
design, larger and larger pieces are assembled from essentially the
same building blocks. Web-scale companies don’t hesitate to go to 4-
tier or even 6-tier Clos networks to work around the scale limita‐
tions of smaller building blocks. Coupled with the ever-larger port
count support coming in merchant silicon, support for even larger
data centers is quite feasible.

Crucial Side Effects of Clos Networks
Rather than relying on seemingly infallible network switches, the
web-scale pioneers built resilience into their applications, thus mak‐
ing the network do what it does best: provide good connectivity
through a rich, high-capacity connectivity matrix. As we discussed
earlier, this high capacity and dense interconnect reduces the blast
radius of a failure.

A consequence of using fixed-form factor switches is that there are a
lot of cables to manage. The larger network operators all have some
homegrown cable verification technology. There is an open source
project called Prescriptive Topology Manager (PTM) that I coau‐
thored, which handles cable verification.

Another consequence of fixed-form switches is that they fail in sim‐
ple ways. A large chassis can fail in complex ways because there are
so many “moving parts.” Simple failures make for simpler trouble‐
shooting, and, better still, for affordable sparing, allowing operators
to swap-out failing switches with good ones instead of troubleshoot‐
ing a failure in a live network. This further adds to the resilience of
the network.

In other words, resilience becomes an emergent property of the
parts working together rather than a feature of each box.

Clos Network Topology | 7

Building a large network with only fixed-form switches also means
that inventory management becomes simple. Because any network
switch is like any other, or there are at most a couple of variations, it
is easy to stock spare devices and replace a failed one with a working
one. This makes the network switch or router inventory model simi‐
lar to the server inventory model.

These observations are important because they affect the day-to-day
life of a network operator. Often, we don’t integrate a new environ‐
ment or choice into all aspects of our thinking. These second-order
derivatives of the Clos network help a network operator to recon‐
sider the day-to-day management of networks differently than they
did previously.

Network Architecture of Clos Networks
A Clos network also calls for a different network architecture from
traditional deployments. This understanding is fundamental to
everything that follows because it helps understand the ways in
which network operations need to be different in a data center net‐
work, even though the networking protocols remain the same.

In a traditional network, what we call leaf–spine layers were called
access-aggregation layers of the network. These first two layers of
network were connected using bridging rather than routing. Bridg‐
ing uses the Spanning Tree Protocol (STP), which breaks the rich
connectivity matrix of a Clos network into a loop-free tree. For
example, in Figure 1-1, the two-tier Clos network, even though
there are four paths between the leftmost leaf and the rightmost leaf,
STP can utilize only one of the paths. Thus, the topology reduces to
something like the one shown in Figure 1-3.

Figure 1-3. Connectivity with STP

8 | Chapter 1: Introduction to Data Center Networks

In the presence of link failures, the path traversal becomes even
more inefficient. For example, if the link between the leftmost leaf
and the leftmost spine fails, the topology can look like Figure 1-4.

Figure 1-4. STP after a link failure

Draw the path between a server connected to the leftmost leaf and a
server connected to the rightmost leaf. It zigzags back and forth
between racks. This is highly inefficient and nonuniform connectiv‐
ity.

Routing, on the other hand, is able to utilize all paths, taking full
advantage of the rich connectivity matrix of a Clos network. Routing
also can take the shortest path or be programmed to take a longer
path for better overall link utilization.

Thus, the first conclusion is that routing is best suited for Clos net‐
works, and bridging is not.

A key benefit gained from this conversion from bridging to routing
is that we can shed the multiple protocols, many proprietary, that
are required in a bridged network. A traditional bridged network is
typically running STP, a unidirectional link detection protocol
(though this is now integrated into STP), a virtual local-area net‐
work (VLAN) distribution protocol, a first-hop routing protocol
such as Host Standby Routing Protocol (HSRP) or Virtual Router
Redundancy Protocol (VRRP), a routing protocol to connect multi‐
ple bridged networks, and a separate unidirectional link detection
protocol for the routed links. With routing, the only control plane
protocols we have are a routing protocol and a unidirectional link
detection protocol. That’s it. Servers communicating with the first-
hop router will have a simple anycast gateway, with no other addi‐
tional protocol necessary.

Network Architecture of Clos Networks | 9

By reducing the number of protocols involved in running a net‐
work, we also improve the network’s resilience. There are fewer
moving parts and therefore fewer points to troubleshoot. It should
now be clear how Clos networks enable the building of not only
highly scalable networks, but also very resilient networks.

Server Attach Models
Web-scale companies deploy single-attach servers—that is, each
server is connected to a single leaf or ToR. Because these companies
have a plenitude of servers, the loss of an entire rack due to a net‐
work failure is inconsequential. However, many smaller networks,
including some larger enterprises, cannot afford to lose an entire
rack of servers due to the loss of a single leaf or ToR. Therefore, they
dual-attach servers; each link is attached to a different ToR. To sim‐
plify cabling and increase rack mobility, these two ToRs both reside
in the same rack.

When servers are thus dual-attached, the dual links are aggregated
into a single logical link (called port channel in networking jargon
or bonds in server jargon) using a vendor-proprietary protocol. Dif‐
ferent vendors have different names for it. Cisco calls it Virtual Port
Channel (vPC), Cumulus calls it CLAG, and Arista calls it Multi-
Chassis Link Aggregation Protocol (MLAG). Essentially, the server
thinks it is connected to a single switch with a bond (or port chan‐
nel). The two switches connected to it provide the illusion, from a
protocol perspective mostly, that they’re a single switch. This illu‐
sion is required to allow the host to use the standard Link Aggrega‐
tion Control Protocol (LACP) protocol to create the bond. LACP
assumes that the link aggregation happens for links between two
nodes, whereas for increased reliability, the dual-attach servers work
across three nodes: the server and the two switches to which it is
connected. Because every multinode LACP protocol is vendor pro‐
prietary, hosts do not need to be modified to support multinode
LACP. Figure 1-5 shows a dual-attached server with MLAG.

10 | Chapter 1: Introduction to Data Center Networks

http://bit.ly/2rXbSYY
http://bit.ly/2rXbSYY

Figure 1-5. Dual-attach with port channel

Connectivity to the External World
How does a data center connect to the outside world? The answer to
this question ends up surprising a lot of people. In medium to large
networks, this connectivity happens through what are called border
ToRs or border pods. Figure 1-6 presents an overview.

Figure 1-6. Connecting a Clos network to the external world via a bor‐
der pod

The main advantage of border pods or border leaves is that they iso‐
late the inside of the data center from the outside. The routing pro‐
tocols that are inside the data center never interact with the external
world, providing a measure of stability and security.

However, smaller networks might not be able to dedicate separate
switches just to connect to the external world. Such networks might
connect to the outside world via the spines, as shown in Figure 1-7.
The important point to note is that all spines are connected to the
internet, not some. This is important because in a Clos topology, all
spines are created equal. If the connectivity to the external world
were via only some of the spines, those spines would become

Connectivity to the External World | 11

congested due to excess traffic flowing only through them and not
the other spines. Furthermore, this would make the resilience more
fragile given that losing even a fraction of the links connecting to
these special spines means that either those leaves will lose complete
access to the external world or will be functioning suboptimally
because their bandwidth to the external world will be reduced sig‐
nificantly by the link failures.

Figure 1-7. Connecting a Clos network to the external world via spines

Support for Multitenancy (or Cloud)
The Clos topology is also suited for building a network to support
clouds, public or private. The additional goals of a cloud architec‐
ture are as follows:

Agility
Given the typical use of the cloud, whereby customers spin up
and tear down networks rapidly, it is critical that the network be
able to support this model.

Isolation
One customer’s traffic must not be seen by another customer.

Scale
Large numbers of customers, or tenants, must be supported.

Traditional solutions dealt with multitenancy by providing the isola‐
tion in the network, via technologies such as VLANs. Service pro‐
viders also solved this problem using virtual private networks

12 | Chapter 1: Introduction to Data Center Networks

(VPNs). However, the advent of server virtualization, aka VMs, and
now containers, have changed the game. When servers were always
physical, or VPNs were not provisioned within seconds or minutes
in service provider networks, the existing technologies made sense.
But VMs spin up and down faster than any physical server could,
and, more important, this happens without the switch connected to
the server ever knowing about the change. If switches cannot detect
the spin-up and spin-down of VMs, and thereby a tenant network, it
makes no sense for the switches to be involved in the establishment
and tear-down of customer networks.

With the advent of Virtual eXtensible Local Area Network (VXLAN)
and IP-in-IP tunnels, cloud operators freed the network from hav‐
ing to know about these virtual networks. By tunneling the cus‐
tomer packets in a VXLAN or IP-in-IP tunnel, the physical network
continued to route packets on the tunnel header, oblivious to the
inner packet’s contents. Thus, the Clos network can be the backbone
on which even cloud networks are built.

Operational Consequences of Modern Data
Center Design
The choices made in the design of modern data centers have far
reaching consequences on data center administration.

The most obvious one is that given the sheer scale of the network, it
is not possible to manually manage the data centers. Automation is
nothing less than a requirement for basic survival. Automation is
much more difficult, if not impractical, if each building block is
handcrafted and unique. Design patterns must be created so that
automation becomes simple and repeatable. Furthermore, given the
scale, handcrafting each block makes troubleshooting problematic.

Multitenant networks such as clouds also need to spin up and tear
down virtual networks quickly. Traditional network designs based
on technologies such as VLAN neither scale to support a large num‐
ber of tenants nor can be spun up and spun down quickly. Further‐
more, such rapid deployment mandates automation, potentially
across multiple nodes.

Not only multitenant networks, but larger data centers also require
the ability to roll out new racks and replace failed nodes in time‐
scales an order or two of magnitude smaller than is possible with

Operational Consequences of Modern Data Center Design | 13

traditional networks. Thus, operators need to come up with solu‐
tions that enable all of this.

Choice of Routing Protocol
It seems obvious that Open Shortest Path First (OSPF) or Intermedi‐
ate System–to–Intermediate System (IS-IS) would be the ideal
choice for a routing protocol to power the data center. They’re both
designed for use within an enterprise, and most enterprise network
operators are familiar with managing these protocols, at least OSPF.
OSPF, however, was rejected by most web-scale operators because of
its lack of multiprotocol support. In other words, OSPF required
two separate protocols, similar mostly in name and basic function,
to support both IPv4 and IPv6 networks.

In contrast, IS-IS is a far better regarded protocol that can route
both IPv4 and IPv6 stacks. However, good IS-IS implementations
are few, limiting the administrator’s choices. Furthermore, many
operators felt that a link-state protocol was inherently unsuited for a
richly connected network such as the Clos topology. Link-state pro‐
tocols propagated link-state changes to even far-flung routers—
routers whose path state didn’t change as a result of the changes.

BGP stepped into such a situation and promised something that the
other two couldn’t offer. BGP is mature, powers the internet, and is
fundamentally simple to understand (despite its reputation to the
contrary). Many mature and robust implementations of BGP exist,
including in the world of open source. It is less chatty than its link-
state cousins, and supports multiprotocols (i.e., it supports advertis‐
ing IPv4, IPv6, Multiprotocol Label Switching (MPLS), and VPNs
natively). With some tweaks, we can make BGP work effectively in a
data center. Microsoft’s Azure team originally led the charge to
adapt BGP to the data center. Today, most customers I engage with
deploy BGP.

The next part of our journey is to understand how BGP’s traditional
deployment model has been modified for use in the data center.

14 | Chapter 1: Introduction to Data Center Networks

CHAPTER 2

How BGP Has Been Adapted
to the Data Center

Before its use in the data center, BGP was primarily, if not exclu‐
sively, used in service provider networks. As a consequence of its
primary use, operators cannot use BGP inside the data center in the
same way they would use it in the service provider world. If you’re a
network operator, understanding these differences and their reason
is important in preventing misconfiguration.

The dense connectivity of the data center network is a vastly differ‐
ent space from the relatively sparse connectivity between adminis‐
trative domains. Thus, a different set of trade-offs are relevant inside
the data center than between data centers. In the service provider
network, stability is preferred over rapid notification of changes. So,
BGP typically holds off sending notifications about changes for a
while. In the data center network, operators want routing updates to
be as fast as possible. Another example is that because of BGP’s
default design, behavior, and its nature as a path-vector protocol, a
single link failure can result in an inordinately large number of BGP
messages passing between all the nodes, which is best avoided. A
third example is the default behavior of BGP to construct a single
best path when a prefix is learned from many different Autonomous
System Numbers (ASNs), because an ASN typically represents a sep‐
arate administrative domain. But inside the data center, we want
multiple paths to be selected.

15

Two individuals put together a way to fit BGP into the data center.
Their work is documented in RFC 7938.

This chapter explains each of the modifications to BGP’s behavior
and the rationale for the change. It is not uncommon to see network
operators misconfigure BGP in the data center to deleterious effect
because they failed to understand the motivations behind BGP’s
tweaks for the data center.

How Many Routing Protocols?
The simplest difference to begin with is the number of protocols
that run within the data center. In the traditional model of deploy‐
ment, BGP learns of the prefixes to advertise from another routing
protocol, usually Open Shortest Path First (OSPF), Intermediate
System–to–Intermediate System (IS-IS), or Enhanced Interior Gate‐
way Routing Protocol (EIGRP). These are called internal routing
protocols because they are used to control routing within an enter‐
prise. So, it is not surprising that people assume that BGP needs
another routing protocol in the data center. However, in the data
center, BGP is the internal routing protocol. There is no additional
routing protocol.

Internal BGP or External BGP
One of the first questions people ask about BGP in the data center is
which BGP to use: internal BGP (iBGP) or external BGP (eBGP).
Given that the entire network is under the aegis of a single adminis‐
trative domain, iBGP seems like the obvious answer. However, this
is not so.

In the data center, eBGP is the most common deployment model.
The primary reason is that eBGP is simpler to understand and
deploy than iBGP. iBGP can be confusing in its best path selection
algorithm, the rules by which routes are forwarded or not, and
which prefix attributes are acted upon or not. There are also limita‐
tions in iBGP’s multipath support under certain conditions: specifi‐
cally, when a route is advertised by two different nodes. Overcoming
this limitation is possible, but cumbersome.

A newbie is also far more likely to be confused by iBGP than eBGP
because of the number of configuration knobs that need to be

16 | Chapter 2: How BGP Has Been Adapted to the Data Center

https://tools.ietf.org/rfc/rfc7938.txt

twiddled to achieve the desired behavior. Many of the knobs are
incomprehensible to newcomers and only add to their unease.

A strong nontechnical reason for choosing eBGP is that there are
more full-featured, robust implementations of eBGP than iBGP. The
presence of multiple implementations means a customer can avoid
vendor lock-in by choosing eBGP over iBGP. This was especially
true until mid-2012 or so, when iBGP implementations were buggy
and less full-featured than was required to operate within the data
center.

ASN Numbering
Autonomous System Number (ASN) is a fundamental concept in
BGP. Every BGP speaker must have an ASN. ASNs are used to iden‐
tify routing loops, determine the best path to a prefix, and associate
routing policies with networks. On the internet, each ASN is
allowed to speak authoritatively about particular IP prefixes. ASNs
come in two flavors: a two-byte version and a more modern four-
byte version.

The ASN numbering model is different from how they’re assigned
in traditional, non-data center deployments. This section covers the
concepts behind how ASNs are assigned to routers within the data
center.

If you choose to follow the recommended best practice of using
eBGP as your protocol, the most obvious ASN numbering scheme is
that every router is assigned its own ASN. This approach leads to
problems, which we’ll talk about next. However, let’s first consider
the numbers used for the ASN. In internet peering, ASNs are pub‐
licly assigned and have well-known numbers. But most routers
within the data center will rarely if ever peer with a router in a dif‐
ferent administrative domain (except for the border leaves described
in Chapter 1). Therefore, ASNs used within the data center come
from the private ASN number space.

Private ASNs
A private ASN is one that is for use outside of the global internet.
Much like the private IP address range of 10.0.0.0/8, private ASNs
are used in communication between networks not exposed to the
external world. A data center is an example of such a network.

ASN Numbering | 17

1 This is additional information passed with every route, indicating the list of ASNs trav‐
ersed from the origin of this advertisement.

Nothing stops an operator from using the public ASNs, but this is
not recommended for two major reasons.

The first is that using global ASNs might confuse operators and
tools that attempt to decode the ASNs into meaningful names.
Because many ASNs are well known to operators, an operator might
very well become confused, for example, on seeing Verizon’s ASN on
a node within the data center.

The second reason is to avoid the consequences of accidentally leak‐
ing out the internal BGP information to an external network. This
can wreak havoc on the internet. For example, if a data center used
Twitter’s ASN internally, and accidentally leaked out a route claim‐
ing, say, that Twitter was part of the AS_PATH1 for a publicly reach‐
able route within the data center, the network operator would be
responsible for a massive global hijacking of a well-known service.
Misconfigurations are the number one or number two source of all
network outages, and so avoiding this by not using public ASNs is a
good thing.

The old-style 2-byte ASNs have space for only about 1,023 private
ASNs (64512–65534). What happens when a data center network
has more than 1,023 routers? One approach is to unroll the BGP
knob toolkit and look for something called allowas-in. Another
approach, and a far simpler one, is to switch to 4-byte ASNs. These
new-fangled ASNs come with support for almost 95 million private
ASNs (4200000000–4294967294), more than enough to satisfy a
data center of any size in operation today. Just about every routing
suite, traditional or new, proprietary or open source, supports 4-
byte ASNs.

The Problems of Path Hunting
Returning to how the ASNs are assigned to a BGP speaker, the most
obvious choice would be to assign a separate ASN for every node.
But this approach leads to problems inherent to path-vector proto‐
cols. Path-vector protocols suffer from a variation of a problem
called count-to-infinity, suffered by distance vector protocols.
Although we cannot get into all the details of path hunting here, you

18 | Chapter 2: How BGP Has Been Adapted to the Data Center

can take a look at a simple explanation of the problem from the sim‐
ple topology shown in Figure 2-1.

Figure 2-1. A sample topology to explain path hunting

In this topology, all of the nodes have separate ASNs. Now, consider
the reachability to prefix 10.1.1.1 from R1’s perspective. R2 and R3
advertise reachability to the prefix 10.1.1.1 to R1. The AS_PATH
advertised by R2 for 10.1.1.1 is [R2, R4], and the AS_PATH adver‐
tised by R3 is [R3, R4]. R1 does not know how R2 and R3 them‐
selves learned this information. When R1 learns of the path to
10.1.1.1 from both R2 and R3, it picks one of them as the best path.
Due to its local support for multipathing, its forwarding tables will
contain reachability to 10.1.1.1 via both R2 and R3, but in BGP’s
best path selection, only one of R2 or R3 can win.

Let’s assume that R3 is picked as the best path to 10.1.1.1 by R1. R1
now advertises that it can reach 10.1.1.1 with the AS_PATH [R1, R3,
R4] to R2. R2 accepts the advertisement, but does not consider it a
better path to reach 10.1.1.1, because its best path is the shorter
AS_PATH R4.

Now, when the node R4 dies, R2 loses its best path to 10.1.1.1, and
so it recomputes its best path via R1, AS_PATH [R1, R3, R4] and
sends this message to R1. R2 also sends a route withdrawal message
for 10.1.1.1 to R1. When R3’s withdrawal to route 10.1.1.1 reaches
R1, R1 also withdraws its route to 10.1.1.1 and sends its withdrawal
to R2. The exact sequence of events might not be as described here
due to the timing of packet exchanges between the nodes and how
BGP works, but it is a close approximation.

The short version of this problem is this: because a node does not
know the physical link state of every other node in the network, it
doesn’t know whether the route is truly gone (because the node at
the end went down itself) or is reachable via some other path. And

ASN Numbering | 19

so, a node proceeds to hunt down reachability to the destination via
all its other available paths. This is called path hunting.

In the simple topology of Figure 2-1, this didn’t look so bad. But in a
Clos topology, with its dense interconnections, this simple problem
becomes quite a significant one with a lot of additional message
exchanges and increased loss of traffic loss due to misinformation
propagating for a longer time than necessary.

ASN Numbering Model
To avoid the problem of path hunting, the ASN numbering model
for routers in a Clos topology is as follows:

• All ToR routers are assigned their own ASN.
• Leaves across a pod have a different ASN, but leaves within each

pod have an ASN that is unique to that pod.
• Interpod spines share a common ASN.

Figure 2-2 presents an example of ASN numbering for a three-tier
Clos.

Figure 2-2. Sample ASN numbering in a Clos topology

This numbering solves the path hunting problem. In BGP, ASN is
how one neighbor knows another. In Figure 2-1, let R2 and R3 be
given the same ASN. When R1 told R2 that it had a path to 10.1.1.1
via R3, R2 rejected that path completely because the AS_PATH field
contained the ASN of R3, which was the same as R2, which indica‐
ted a routing loop. Thus, when R2 and R3 lose their link to R4, and
hence to 10.1.1.1, the only message exchange that happens is that
they withdraw their advertisement to 10.1.1.1 from R1 and 10.1.1.1

20 | Chapter 2: How BGP Has Been Adapted to the Data Center

is purged from all the routers’ forwarding tables. In contrast, given
the numbering in Figure 2-2, leaves and spines will eliminate alter‐
nate paths due to the AS_PATH loop-detection logic encoded in
BGP’s best-path computation.

The one drawback of this form of ASN numbering is that route
aggregation or summarization is not possible. To understand why,
let’s go back to Figure 2-1, with R2 and R3 having the same ASN.
Let’s further assume that R2 and R3 have learned of other prefixes,
say from 10.1.1.2/32-10.1.1.250/32 via directly attached servers (not
shown in the figure). Instead of announcing 250 prefixes (10.1.1.1–
10.1.1.250) to R1, both R2 and R3 decide to aggregate the routes and
announce a single 10.1.1.0/24 route to R4. Now, if the link between
R2 and R4 breaks, R2 no longer has a path to 10.1.1.1/32. It cannot
use the path R1-R3-R4 to reach 10.1.1.1, as explained earlier. R1 has
computed two paths to reach 10.1.1.0/24, via R2 and R3. If it
receives a packet destined to 10.1.1.1, it might very well choose to
send it to R2, which has no path to reach 10.1.1.1; the packet will be
dropped by R2, causing random loss of connectivity to 10.1.1.1. If
instead of summarizing the routes, R2 and R3 sent the entire list of
250 prefixes separately, when the link to R4 breaks, R2 needs to
withdraw only the route to 10.1.1.1, while retaining the advertise‐
ment to the other 249 routes. R1 will correctly establish a single
reachability to 10.1.1.1, via R3; but it maintains multiple paths, via
R2 and R3, for the other 249 prefixes. Thus, route summarization is
not possible with this ASN numbering scheme.

Best Path Algorithm
BGP uses an algorithm to compute the best path to a given prefix
from a node. Understanding this is fundamental to understanding
how forwarding happens in a BGP routed network, and why certain
paths are chosen over others.

BGP’s best path selection is triggered when a new UPDATE message
is received from one or more of its peers. Implementations can
choose to buffer the triggering of this algorithm so that a single run
will process all updates instead of swapping routes rapidly by run‐
ning the algorithm very frequently.

OSPF, IS-IS, and other routing protocols have a simple metric by
which to decide which of the paths to accept. BGP has eight!

Best Path Algorithm | 21

Although I’ll mention them all in this section, only one matters for
the data center: AS_PATH.

You can use this pithy mnemonic phrase to remember the BGP path
algorithms:

Wise Lip Lovers Apply Oral Medication Every Night.
I first heard this at a presentation given by my friend and noted BGP
expert, Daniel Walton. The actual inventor of the phrase is a Cisco
engineer, Denise Fishburne, who was kind enough to let me use it in
this book. Figure 2-3 illustrates the correspondence between the
mnemonic and the actual algorithms.

Figure 2-3. BGP best-path selection criteria

For those interested in knowing more, Section 9 of RFC 4271 covers
each metric in gory detail. iBGP routes have a further match criteria
beyond these eight parameters, but a discussion of those parameters
is beyond the scope of this book.

Multipath Selection
In a densely connected network such as a Clos network, route multi‐
pathing is a fundamental requirement to building robust, scalable
networks. BGP supports multipathing, whether the paths have equal
costs or unequal costs, though not all implementations support
unequal-cost multipathing. As described in the previous section,
two paths are considered equal if they are equal in each of the eight
criteria. One of the criteria is that the AS numbers in the AS_PATH
match exactly, not just that they have equal-length paths. This

22 | Chapter 2: How BGP Has Been Adapted to the Data Center

https://tools.ietf.org/html/rfc4271#section-9

breaks multipathing in two common deployment scenarios within
the data center.

The first deployment scenario, in which the same route might be
announced from different ASNs, is when a server is dual-attached,
with a separate ASN for each ToR switch, as shown in Figure 2-4. In
the figure, the ellipses represent a bond or port channel; that is, the
two links are made to look as one higher-speed logical link to upper
layer protocols.

Figure 2-4. Dual-attached server

Let’s assume that both leaves announce a subnet route to 10.1.1.0/24,
the subnet of the bridge to which the server is attached. In this case,
each spine sees the route to 10.1.1.0/24 being received, one with
AS_PATH of 64600, and the other with an AS_PATH of 64601. As
per the logic for equal-cost paths, BGP requires not only that the
AS_PATH lengths be the same, but that the AS_PATHs contain the
same ASN list. Because this is not the case here, each spine will not
multipath; instead, they will pick only one of the two routes.

In the second deployment scenario, when virtual services are
deployed by servers, multiple servers will announce reachability to
the same service virtual IP address. Because the servers are connec‐
ted to different switches to ensure reliability and scalability, the
spines will again receive a route from multiple different ASNs, for
which the AS_PATH lengths are identical, but the specific ASNs
inside the path itself are not.

Multipath Selection | 23

There are multiple ways to address this problem, but the simplest
one is to configure a knob that modifies the best-path algorithm.
The knob is called bestpath as-path multipath-relax. What it
does is simple: when the AS_PATH lengths are the same in adver‐
tisements from two different sources, the best-path algorithm skips
checking for exact match of the ASNs, and proceeds to match on the
next criteria.

Slow Convergence Due to Default Timers
To avoid configuring every knob explicitly, a common practice is to
assume safe, conservative values for parameters that are not speci‐
fied. Timers in particular are a common knob for which defaults are
assumed if the operator doesn’t provide any specific information. In
the simplest terms, timers control the speed of communication
between the peers. For BGP, these timers are by default tuned for the
service provider environment, for which stability is preferred over
fast convergence. Inside the data center, although stability is cer‐
tainly valued, fast convergence is even more important.

There are four timers that typically govern how fast BGP converges
when either a failure occurs or when it is recovering from a failure
(such as a link becoming available again). Understanding these
timers is important because they affect the speed with which the
information propagates through the network, and tuning them
allows an operator to achieve convergence speeds with BGP that
match other internal routing protocols such as Open Shortest Path
First (OSPF). We’ll look at these timers in the following sections.

Advertisement Interval
BGP maintains a minimum interval per neighbor. Events within this
minimum interval window are bunched together and sent at one
shot when the minimum interval expires. This is essential for the
most stable code, but it also helps prevent unnecessary processing in
the event of multiple updates within a short duration. The default
value for this interval is 30 seconds for eBGP peers, and 0 seconds
for iBGP peers. However, waiting 30 seconds between updates is
entirely the wrong choice for a richly connected network such as
those found in the data center. 0 is the more appropriate choice
because we’re not dealing with routers across administrative

24 | Chapter 2: How BGP Has Been Adapted to the Data Center

domains. This change alone can bring eBGP’s convergence time to
that of other IGP protocols such as OSPF.

Keepalive and Hold Timers
In every BGP session, a node sends periodic keepalive messages to
its peer. If the peer doesn’t receive a keepalive for a period known as
the hold time, the peer declares the session as dead, drops the con‐
nection and all the information received on this connection, and
attempts to restart the BGP state machine.

By default, the keepalive timer is 60 seconds and the hold timer is
180 seconds. This means that a node sends a keepalive message for a
session every minute. If the peer does not see a single keepalive mes‐
sage for three minutes, it declares the session dead. By default, for
eBGP sessions for which the peer is a single routing hop away, if the
link fails, this is detected and the session is reset immediately. What
the keepalive and hold timers do is to catch any software errors
whereby the link is up but has become one-way due to an error, such
as in cabling. Some operators enable a protocol called Bidirectional
Forwarding Detection (BFD) for subsecond, or at most a second,
detection of errors due to cable issues. However, to catch errors in
the BGP process itself, you need to adjust these timers.

Inside the data center, three minutes is a lifetime. The most com‐
mon values configured inside the data center are three seconds for
keepalive and nine seconds for the hold timer.

Connect Timer
This is the least critical of the four timers. When BGP attempts to
connect with a peer but fails due to various reasons, it waits for a
certain period of time before attempting to connect again. This
period by default is 60 seconds. In other words, if BGP is unable to
establish a session with its peer, it waits for a minute before attempt‐
ing to establish a session again. This can delay session reestablish‐
ment when a link recovers from a failure or a node powers up.

Default Configuration for the Data Center
When crossing administrative and trust boundaries, it is best to
explicitly configure all of the relevant information. Furthermore,
given the different expectations of two separate enterprises, almost

Default Configuration for the Data Center | 25

http://bit.ly/2rewRn1
http://bit.ly/2rewRn1

nothing is assumed in BGP, with every knob needing to be explicitly
configured.

When BGP was adapted for use in the data center, none of these
aspects of BGP was modified. It is not the protocol itself that needs
to be modified, but the way it is configured. Every knob that must be
configured strikes terror (or at least potentially sows confusion) in
the minds of newbies and intermediate practitioners. Even those
who are versed in BGP feel the need to constantly keep up because
of the amount of work required by BGP.

A good way to avoid all of these issues is to set up good defaults so
that users don’t need to know about the knobs they don’t care about.
The BGP implementation in many proprietary routing suites origi‐
nated in the service provider world, so such an option is not typi‐
cally available. With open source routing suites that are geared
toward the data center, such as FRRouting, the default configuration
saves the user from having to explicitly configure many options.

Good defaults also render the size of your configuration much more
manageable, making it easy to eyeball configurations and ensure
that there are no errors. As your organization becomes more famil‐
iar with BGP in the data center, sane default configurations can pro‐
vide the basis for reliable automation.

Here are the default settings in FRRouting for BGP. These are the
settings I believe are the best practice for BGP in the data center.
These are the settings I’ve seen used in just about every production
data center I’ve encountered.

• Multipath enabled for eBGP and iBGP
• Advertisement interval set to 0
• Keepalive and Hold timers set to 3s and 9s
• Logging adjacency changes enabled

Summary
This chapter covered the basic concepts behind adapting BGP to the
data center, such as the use of eBGP as the default deployment
model and the logic behind configuring ASNs. In the next two chap‐
ters, we’ll apply what we learned in this chapter to configuring nodes
in a Clos topology.

26 | Chapter 2: How BGP Has Been Adapted to the Data Center

https://frrouting.org/

CHAPTER 3

Building an Automatable
BGP Configuration

It is not sufficient to merely learn how to configure BGP. A network
operator also needs to know how to go about automating the
deployment of this configuration.

As discussed in “Operational Consequences of Modern Data Center
Design” on page 13, the mantra of automation in the data center is
simple: automate or die. If you cannot automate your infrastructure
—and the network is a fundamental part of the infrastructure—
you’ll simply become too inefficient to meet the business objectives.
As a consequence, either the business will shrivel up or evolve to
improve its infrastructure.

In this chapter, we begin the journey of building an automatable
BGP configuration. We won’t show automation with any particular
tool such as Ansible, because sites vary in their use of these tools
and each has its own syntax and semantics that deserve their own
documentation. Instead, we’ll focus on BGP.

The Basics of Automating Configuration
Automation is possible when there are patterns. If we cannot find
patterns, automation becomes extremely difficult, if not impossible.
Configuring BGP is no different. We must seek patterns in the BGP
configuration so that we can automate them. However, detecting
patterns isn’t sufficient. The patterns need to be robust so that

27

changes don’t become hazardous. We must also avoid duplication.
In the section that follows, we’ll examine both of these problems in
detail, and see how we can eliminate them.

Sample Data Center Network
For much of the rest of the book, we’ll use the topology in Figure 3-1
to show how to use BGP. This topology is a good representation of
most data center networks.

Figure 3-1. Sample data center network

In our network, we configure the following:

• The leaves, leaf01 through leaf04
• The spines, spine01 through spine02
• The exit leaves, exit01 through exit02
• The servers, server01 through server04

Except for the servers, all of the devices listed are routers, and the
routing protocol used is BGP.

28 | Chapter 3: Building an Automatable BGP Configuration

A quick reminder: the topology we are using is a Clos
network, so the leaf and spine nodes are all routers, as
described in Chapter 1.

Interface Names Used in This Book
Interface names are specific to each routing platform. Arista, Cisco,
Cumulus, and Juniper all have their own ways to name an interface.
In this book, I use the interface names used on Cumulus Linux.
These ports are named swpX, where swp stands for switchport. So,
in Figure 3-1, server01’s eth1 interface is connected to leaf01’s swp1
interface. Similarly, leaf01’s swp51 interface is connected to
spine01’s swp1 interface.

This chapter configures two routers: leaf01 and spine01. We then
can take this configuration and apply it to other spine and leaf nodes
with their specific IP addresses and BGP parameters.

The Difficulties in Automating Traditional BGP
Example 3-1 shows the simplest possible configurations of leaf01
and leaf02. For those who are new to BGP, a few quick words about
some of the key statements in the configuration:

router bgp 65000

This is how you specify the ASN for this BGP speaker. This also
marks the start of the BGP-specific configuration block in FRR.

bgp router-id 10.0.254.1

Every routing protocol speaker has a unique router-id that
identifies the speaker. This is true across all routing protocols,
including BGP. Bad things ensue if this ID is not unique in most
protocols, so it’s just good practice to keep this unique by mak‐
ing it the same as the loopback IP address.

neighbor peer-group ISL

In FRR, this is a way to define a configuration template.

The Difficulties in Automating Traditional BGP | 29

neighbor ISL remote-as 65500

This is the specification of the remote end’s ASN. Traditional
BGP configurations require this. We’ll see how we can simplify
this in the next chapter.

neighbor 169.254.1.0 peer-group ISL

This is how you indicate to the BGP daemon that you’d like to
establish a session with the specified IP address, using the
parameters specified in the configuration template ISL.

address-family ipv4 unicast

Given that BGP is a multiprotocol routing protocol, the
address-family block specifies the configuration to apply for a
specific protocol (in this case, ipv4 unicast).

neighbor ISL activate

BGP requires you to explicitly state that you want it to advertise
routing state for a given address family’ and that is what acti
vate does.

network 10.0.254.1/32

This tells BGP to advertise reachability to the prefix
10.0.254.1/32. This prefix needs to already be in the routing
table in order for BGP to advertise it.

maximum-paths 64

This tells BGP that it needs to use multiple paths, if available, to
reach a prefix.

The meaning of the various timers was discussed in “Slow Conver‐
gence Due to Default Timers” on page 24.

Example 3-1. Highlighting the router-specific configuration across
leaf01 and leaf02

// leaf01’s BGP configuration

log file /var/log/frr/frr.log

router bgp 65000
 bgp router-id 10.0.254.1
 bgp log-neighbor-changes
 bgp no default ipv4-unicast
 timers bgp 3 9
 neighbor peer-group ISL
 neighbor ISL remote-as 65500

30 | Chapter 3: Building an Automatable BGP Configuration

 neighbor ISL advertisement-interval 0
 neighbor ISL timers connect 5
 neighbor 169.254.1.0 peer-group ISL
 neighbor 169.254.1.64 peer-group ISL
 address-family ipv4 unicast
 neighbor ISL activate
 network 10.0.254.1/32
 network 10.1.1.0/26
 maximum-paths 64
 exit-address-family

// leaf02’s BGP configuration

log file /var/log/frr/frr.log

router bgp 65001
 bgp router-id 10.0.254.2
 bgp log-neighbor-changes
 bgp no default ipv4-unicast
 timers bgp 3 9
 neighbor peer-group ISL
 neighbor ISL remote-as 65500
 neighbor ISL advertisement-interval 0
 neighbor ISL timers connect 5
 neighbor 169.254.1.0 peer-group ISL
 neighbor 169.254.1.64 peer-group ISL
 address-family ipv4 unicast
 neighbor ISL activate
 network 10.0.254.1/32
 network 10.1.1.0/26
 maximum-paths 64
 exit-address-family

Let’s look at leaf01 by itself first to see what is duplicated in it. For
example, 10.0.254.1 is specified twice, once with /32 and once
without. The first time it is specified as the default gateway address,
and the second time as the interface.

Configuration is less error-prone when there is as little duplication
as possible. It is a well-known maxim in coding to avoid duplicating
code. Duplication is problematic because with more places to fix the
same piece of information, it is easy to forget to fix one of the multi‐
ple places when making a change or fixing a problem. Duplication is
also cumbersome because a single change translates to changes
needing to be made in multiple places.

Consider the effects of duplicating the IP address across the inter‐
face and inside BGP. If the interface IP address changes, a corre‐
sponding change must be made in the BGP configuration, as well.

The Difficulties in Automating Traditional BGP | 31

Otherwise, you’ll lose connectivity after the change. Another exam‐
ple is you we changed the default gateway address on this node and
assigned it to another node, but forgot the change the router-id.
You’d end up with two routers having the same router-id, which
could result in peering difficulties (though only in iBGP, not eBGP).
The same thing would apply for the network statements, too.

Furthermore, this configuration assumes just a single VLAN or sub‐
net for each of the leaves. If there were multiple subnets, individu‐
ally listing them all would be unscalable. Or, even if you did that, the
resulting configuration would be too long to be readable.

Now let’s compare the configuration across the spines, as shown in
Example 3-2.

Example 3-2. Highlighting the router-specific configuration across
spine01 and spine02

// spine01’s BGP configuration

log file /var/log/frr/frr.log

router bgp 65534
 bgp router-id 10.0.254.254
 bgp log-neighbor-changes
 bgp no default ipv4-unicast
 timers bgp 3 9
 neighbor peer-group ISL
 neighbor ISL advertisement-interval 0
 neighbor ISL timers connect 5
 neighbor 169.254.1.1 remote-as 65000
 neighbor 169.254.1.1 peer-group ISL
 neighbor 169.254.1.3 remote-as 65001
 neighbor 169.254.1.3 peer-group ISL
 neighbor 169.254.1.5 remote-as 65002
 neighbor 169.254.1.5 peer-group ISL
 neighbor 169.254.1.5 remote-as 65003
 neighbor 169.254.1.7 peer-group ISL
 bgp bestpath as-path multipath-relax
 address-family ipv4 unicast
 neighbor ISL activate
 network 10.0.254.254/32
 maximum-paths 64
 exit-address-family

// spine02’s BGP configuration

log file /var/log/frr/frr.log

32 | Chapter 3: Building an Automatable BGP Configuration

router bgp 65534
 bgp router-id 10.0.254.253
 bgp log-neighbor-changes
 bgp no default ipv4-unicast
 timers bgp 3 9
 neighbor peer-group ISL
 neighbor ISL advertisement-interval 0
 neighbor ISL timers connect 5
 neighbor 169.254.1.1 remote-as 65000
 neighbor 169.254.1.1 peer-group ISL
 neighbor 169.254.1.3 remote-as 65001
 neighbor 169.254.1.3 peer-group ISL
 neighbor 169.254.1.5 remote-as 65002
 neighbor 169.254.1.5 peer-group ISL
 neighbor 169.254.1.5 remote-as 65003
 neighbor 169.254.1.7 peer-group ISL
 bgp bestpath as-path multipath-relax
 address-family ipv4 unicast
 neighbor ISL activate
 network 10.0.254.254/32
 maximum-paths 64
 exit-address-family

The same issues that were present in the configuration across the
leaves is also present in the configuration across the spines.

However, there are a few things done right in this configuration:

• The interface IP addresses have a pattern. Assuming 32 port
spines (32 × 100 Gbps and 32 × 40 Gbps switches are common
these days), 64 interface IP addresses are required. Using /31
subnets across each interface allows us to allocate a /26 subnet
across the two spines.

• The default gateway address subnets are announced from a
common subnet, which is different from the subnets allocated
to end hosts.

• Assuming 40 hosts per rack, which is itself a stretch in all but
the largest data centers, in the network configuration, we alloca‐
ted /26 subnets for each subnet associated to hosts.

To summarize the difficulties with the configurations across nodes,
we see that using IP addresses means we duplicate information in
multiple places, and so the configuration becomes fragile and
unscalable as new IP addresses are added and removed.

The Difficulties in Automating Traditional BGP | 33

Although detecting patterns in the neighbor IP addresses is possible,
it is also fragile in that later changes can break the assumptions built
in to the pattern recognition. For example, if we assume that we
numbered the addresses serially, adding a new spine later can break
that pattern. So, instead of the addition being simple, every change
would be fragile and need to be handled specially.

How, then, do we overcome these issues? Time to unpack a few tools
from the armory.

Redistribute Routes
To eliminate the specification of individual IP addresses to
announce via network statements, we can use a different command:
redistribute.

Since just about their first introduction, all routing protocol suites
have provided an option to take prefixes from one protocol and
advertise it in another. This practice is called redistributing routes.

The general command format in BGP looks like this:

redistribute protocol route-map route-map-name

The protocol is one of the following values:

static

Announce routes that have been statically configured.

connected

Announce routes associated with interface addresses. The links
on these interfaces must be up and operational when this con‐
figuration runs. If a link fails, its IP address is withdrawn imme‐
diately.

kernel

This is specific to Linux operating systems. Routes can be stati‐
cally configured either by a routing suite—FRRouting, bird, or
quagga, for example—or directly in the kernel, either via a tool‐
set such as iproute2 (the ip family of commands) or directly via
the netlink interface to the kernel itself.

ospf

Redistribute routes learned via the OSPF protocol.

34 | Chapter 3: Building an Automatable BGP Configuration

bgp

Redistribute routes learned via the BGP protocol.

rip

Redistribute routes learned via Routing Information Protocol
(RIP) protocol.

Some other less common protocols also can be represented, such as
IS-IS.

So, to advertise the interface IP addresses of all the VLANs on the
box and default gateway, it is sufficient to replace all the network
statements with a single command:

redistribute connected

The configuration on leaf01 would look like this after replacing net
work statements with redistribute:

log file /var/log/frr/frr.log
router bgp 65000
 bgp router-id 10.0.254.1
 bgp log-neighbor-changes
 bgp no default ipv4-unicast
 timers bgp 3 9
 neighbor peer-group ISL
 neighbor ISL remote-as 65500
 neighbor ISL advertisement-interval 0
 neighbor ISL timers connect 5
 neighbor 169.254.1.0 peer-group ISL
 neighbor 169.254.1.64 peer-group ISL
 address-family ipv4 unicast
 neighbor ISL activate
 redistribute connected
 maximum-paths 64
 exit-address-family

However, the use of an unadorned redistribute statement leads to
potentially advertising addresses that should not be, such as the
interface IP addresses, or in propagating configuration errors. As an
example of the latter, if an operator accidentally added an IP address
of 8.8.8.8/32 on an interface, the BGP will announce reachability to
that address, thereby sending all requests meant for the public, well-
known, DNS server to that hapless misconfigured router.

To avoid all of these issues, just about every routing protocol sup‐
ports some form of routing policy.

Redistribute Routes | 35

Routing Policy
Routing policy, at its simplest, specifies when to accept or reject
route advertisements. Based on where they’re used, the accept or
reject could apply to routes received from a peer, routes advertised
to a peer, and redistributed routes. At its most complex, routing pol‐
icy can modify metrics that affect the best-path selection of a prefix,
and add or remove attributes or communities from a prefix or set of
prefixes. Given BGP’s use primarily in connecting different adminis‐
trative domains, BGP has the most sophisticated routing policy
constructs.

A routing policy typically consists of a sequence of if-then-else state‐
ments, with matches and actions to be taken on a successful match.

While we’ve thus far avoided the use of any routing policy, we can
now see the reason for using them with BGP in the data center.

For example, to avoid the problem of advertising 8.8.8.8, as
described in the previous section, the pseudocode for the routing
policy would look like the following (we develop this pseudocode
into actual configuration syntax by the end of this section):

if prefix equals '8.8.8.8/32' then reject else accept

In a configuration in which connected routes are being redistrib‐
uted, a safe policy would be to accept the routes that belong to this
data center and reject any others. The configurations I’ve shown,
contain two kinds of prefixes: 10.1.0.0/16 (assuming there are lots of
host-facing subnets in the network) and the router’s loopback IP
address, as an example 10.0.254.1/32. We also see the interface
address subnet, 169.254.0.0/16, which must not be advertised. So, a
first stab at a routing policy would be the following:

if prefix equals 10.1.0.0/16 then accept
else if prefix equals 10.0.254.1/32 then accept
else reject

However, this requires us to put in a different route-map clause for
every router because every router has a different loopback IP
address. If instead we chose the subnet from which these addresses
are allocated, 10.0.254.0/24, the route-map becomes the same across
all of the routers. However, because the loopback IP address of a
router is contained within this subnet and is not equal to this sub‐
net, we cannot use prefix equals. Instead, we introduce a new

36 | Chapter 3: Building an Automatable BGP Configuration

qualifier, belongs, which checks whether an IP address belongs to
the specified subnet. Here’s the newly rewritten pseudocode for the
routing policy:

if prefix belongs to 10.1.0.0/16 then accept
else if prefix belongs to 10.0.254.0/24 then accept
else reject

But this would accept anyone accidentally announcing the subnet
10.0.254.0/26, as an example, when the allowed prefixes are the
precise addresses of the router loopbacks, all of which are /32
addresses. How can we address this? By adding more qualifiers:

if prefix belongs to 10.1.0.0/16 then accept
else if (prefix belongs to 10.0.254.0/24 and
 address mask equals 32) then
 accept
else reject

The qualifier we added, address mask equals, allows us to match
addresses more precisely by accounting for not just the address, but
the address mask, as well.

Because multiple such routing policies are possible, let’s give this
policy a name and make it a function thus:

ACCEPT_DC_LOCAL(prefix)
{
 if prefix belongs to 10.1.0.0/16 then accept
 else if (10.0.254.0/24 contains prefix and
 subnet equals 32) then
 accept
 else reject
}

Just about every network configuration I’ve seen uses
all caps for route-map and prefix-list names.
Although this is just a name and operators are free to
choose their conventions—all caps, camelCase, or any‐
thing else—it is useful to be aware of convention.

Route-Maps
route-maps are a common way to implement routing policies. Cis‐
co’s IOS, NXOS, the open source protocol suite FRRouting, Arista,
and others support route-maps. JunOS uses a different syntax with,
some would argue, more intuitive keywords. The open source rout‐
ing suite BIRD goes a step further and uses a simple domain-specific

Routing Policy | 37

http://bird.network.cz/

programming language instead of this combination of route-maps
and prefix-lists. The details of describing that are beyond the
scope of this book, but if you’re interested, you can find the details
on BIRD’s web pages.

route-maps have the following syntax:

route-map NAME (permit|deny) [sequence_number]
 match classifier
 set action

This assigns a name to the policy, indicates whether the matched
routes will be permitted or denied, and then matches inputs against
a classifier. If a match clause successfully matches a classifier, the set
clause acts on the route. The optional sequence number orders the
sequence of clauses to be executed within a route-map.

When we use the permit keyword, the set action is applied when
the match succeeds, but when we use the deny keyword, the set
action is applied when the match fails. In other words, deny func‐
tions as a “not” operator: if there’s a match, reject the route.

route-maps have an implicit “deny” at the end. Thus, if no entry is
matched, the result is to reject the input.

Classifiers in route-maps

route-maps come with a rich set of classifiers. You can use an exten‐
sive variety of traits as classifiers, and different implementations
support different subsets of these classifiers (some support all and
more). The list in Table 3-1 is taken from FRRouting’s list.

Table 3-1. Key classifiers in the match field of a route-map
as-path Match value from BGP’s AS_PATH
community Match value from a prefix’s community, if any
extcommunity Match value from BGP’s extended community list
interface Match name of next hop interface of route
ip, ipv6 Match IP information such as IP address, nexthop, or source
local-preference Match LOCAL_PREFERENCE of route
metric Match route’s metric field
origin Match route’s ORIGIN attribute
peer Match session peer’s information

38 | Chapter 3: Building an Automatable BGP Configuration

As an example of a routing policy using IP prefixes as classifiers, let’s
begin by looking at how two prefixes are defined:

ip prefix-list DC_LOCAL_SUBNET seq 5 permit 10.1.0.0/16 le 26
ip prefix-list DC_LOCAL_SUBNET seq 10 permit 10.0.254.0/24 le 32

These commands together define a single list called DC_LOCAL_SUB
NET that contains two prefixes: 10.1.0.0/16 and 10.0.254.0/24. In
both cases, matching any prefix against this list checks whether the
prefix either matches exactly or is contained in the prefixes pro‐
vided. In this case, 10.0.254.0/24 le 32 specifically states that any
match must be on a subnet that is /32. Even though it says “less than
or equal to,” in IPv4 there’s no subnet smaller than /32, and so this
functions as an exact match for /32 prefixes only.

seq <number> is used to identify the order of matches. For example,
if you wanted to reject 10.1.1.1/32 but permit 10.1.1.0/24, the right
way to order the prefix-lists using sequence number would be as
follows:

ip prefix-list EXAMPLE_SEQ seq 5 deny 10.1.1.1/32
ip prefix list EXAMPLE_SEQ seq 10 permit 10.1.1.0/24

To allow clauses to be inserted in the middle of an existing order, a
common practice is to separate sequence numbers with some gap. In
the example, we used a gap of 5.

Now, we can define a route-map to match the two prefixes with the
DC_LOCAL_SUBNET name. The following is the route-map equivalent
of the if-then-else route policy pseudocode described earlier in the
routing policy section, and includes the redistribute command
that takes this policy into account:

ip prefix-list DC_LOCAL_SUBNET seq 5 permit 10.1.0.0/16 le 26
ip prefix-list DC_LOCAL_SUBNET seq 10 permit 10.0.254.0/24 le 32
route-map ACCEPT_DC_LOCAL permit 10
 match ip-address DC_LOCAL_SUBNET

redistribute connected route-map DC_LOCAL_SUBNET

Here’s the pseudocode equivalent of this route-map:

DC_LOCAL_SUBNET(prefix)
{
 if (prefix belongs to 10.1.1.0/26 and prefixlen <= 26 or
 prefix belongs to 10.0.254.0/24 and prefixlen <= 32) then
 redistribute connected route
}

Routing Policy | 39

Instead of IP prefixes, we can use any of the other classifiers, as well.
For example, if all we need to do was advertise the router’s primary
loopback IP address, the config lines are as follows:

route-map ADV_LO permit 10
 match interface lo

redistribute connected route-map ADV_LO

Note that this will not advertise the host-local 127.x.x.x address
associated with the loopback interface, but only the globally reacha‐
ble IP addresses.

Writing secure route-map policies
There are secure and insecure ways of writing routing policy. The
fundamental principle is this: always reject anything that isn’t explic‐
itly permitted. Let’s consider this by looking at an example. It’s not
uncommon to want to advertise IP addresses on all interfaces except
those on the uplink (inter-switch) interfaces swp51 and swp52, and
the management interface, eth0. Here’s one way to write the config‐
uration:

route-map EXCEPT_ISL_ETH0 deny 10
 match interface swp51
route-map EXCEPT_ISL_ETH0 deny 20
 match interface swp52
route-map EXCEPT_ISL_ETH0 deny 30
 match interface eth0
route-map EXCEPT_ISL_ETH0 permit 40

redistribute connected route-map EXCEPT_ISL_ETH0

The final permit configuration allows through any interface that
didn’t match one of the deny route-maps.

Following is the pseudocode equivalent of this route-map:

EXCEPT_ISL_ETH0(interface)
{
 if interface is not swp51 and
 interface is not swp52 and
 interface is not eth0 then
 redistribute connected
}

The benefit of this approach is that it allows you to change interfaces
freely and use non-contiguous IP addresses for them, without
changing the route-map or modifying BGP configuration. The dis‐

40 | Chapter 3: Building an Automatable BGP Configuration

advantage is that any new interface that comes up with a valid IP
address will have its IP address immediately advertised, whether the
administrator intended it or not. Therefore, this is considered an
insecure approach that you must never use in configuring routing
policy.

The alternate can be tedious if there are lots of interfaces whose
addresses need to be announced. Typical routing suite implementa‐
tions do not allow the specification of multiple interfaces via a syn‐
tax such as swp1-49 (include all interfaces from swp1 through
swp49). In such cases, resorting to using IP addresses that might be a
smaller list might be an option if the IP addressing used on the
interfaces comes from only a few subnets.

route-maps in BGP

Besides redistributed routes, you can apply route-maps in multiple
other places during BGP processing. Here are some examples:

• Using route-maps to filter out what prefixes to accept in an
advertisement from a neighbor:

neighbor 169.254.1.1 route-map NBR_RT_ACCEPT in

• Using route-maps to filter out what routes what routes to adver‐
tise to a neighbor:

neighbor 169.254.1.1 route-map NBR_RT_ADV out

• Filtering out routes considered for advertisement via a network
statement:

network 10.1.1.1/24 route-map ADV_NET

• Advertising default routes:
neighbor foo default-originate route-map ONLY_NON_EXITS

Effect of route-maps on BGP processing
BGP is a path-vector routing protocol, and so it doesn’t announce
route updates until it runs the best-path algorithm. route-maps are
applied on packet receive and on packet send. If a BGP speaker has
tens or hundreds of neighbors and there are route-maps attached to
these neighbors, running the route-map for each neighbor before
advertising the route becomes CPU-intensive and slows down the

Routing Policy | 41

sending of updates. Slow update processing can result in poor con‐
vergence times, too.

Therefore, peer-groups often are used with route-maps to drasti‐
cally reduce the amount of processing BGP needs to do before
advertising a route to its neighbors. Instead of relying on just user-
configured peer groups, implementations typically build up these
groups dynamically. This is because even within a single peer-
group, different neighbors might support different capabilities (for
example, some might support MPLS, and some might not). This
information can be determined only during session establishment.
So, user configuration either doesn’t help or places an undue burden
on the user to ensure that it all neighbors in a peer group support
exactly the same capabilities.

Thus, an implementation that supports the dynamic creation and
teardown of peer groups puts all neighbors that have the same out‐
going route policy and the same capabilities in a new, dynamically
created peer group or, more precisely, dynamic update group. BGP
runs the policy once for a prefix that encompasses the entire peer
group. The result is then automatically applied to each member of
that dynamically constructed peer group. This allows implementa‐
tions to scale to supporting hundreds or even thousands of
neighbors.

Using Interface Names as Neighbors
Because we’re using /31 addresses for interface IP addresses, it’s easy
to determine the interface IP address of the peer. For example, if one
end has an IP address of 169.254.1.0/31, the IP address of the end of
the interface is obviously 169.254.1.1/31. Similarly, if one end has an
IP address of 169.254.1.64/31, the other end has an IP address of
169.254.1.65/31. The same would be true if /30 subnets were used
for interface addresses.

FRRouting uses this trick to allow users to substitute the interface
name in neighbor statements instead of specifying IP addresses.
This changes the neighbor configuration in leaf01 from

neighbor 169.254.1.0 peer-group ISL
neighbor 169.254.1.64 peer-group ISL

to:

42 | Chapter 3: Building an Automatable BGP Configuration

neighbor swp51 interface peer-group ISL
neighbor swp52 interface peer-group ISL

When the BGP code in FRRouting encounters an interface name in
the neighbor statement, it checks to see whether the interface has an
IPv4 address that is a /30 or a /31. If so, BGP automatically identifies
the remote end’s IP address and initiates a BGP session to that IP
address. If the IP address is not a /30 or /31 and there is an IPv4
address on the link, the code prints a warning and stops trying to
initiate a connection.

Using interface names instead of IP addresses makes the configura‐
tion across the leaves and spines look quite a bit alike, as
Example 3-3 shows.

Example 3-3. BGP configuration of leaves using interface names

// leaf01’s BGP configuration

log file /var/log/frr/frr.log

ip prefix-list DC_LOCAL_SUBNET 5 permit 10.1.0.0/16 le 26
ip prefix-list DC_LOCAL_SUBNET 10 permit 10.0.254.0/24 le 32
route-map ACCEPT_DC_LOCAL permit 10
 match ip-address DC_LOCAL_SUBNET

router bgp 65000
 bgp router-id 10.0.254.1
 bgp log-neighbor-changes
 bgp no default ipv4-unicast
 timers bgp 3 9
 neighbor peer-group ISL
 neighbor ISL remote-as 65500
 neighbor ISL advertisement-interval 0
 neighbor ISL timers connect 5
 neighbor swp51 peer-group ISL
 neighbor swp52 peer-group ISL
 address-family ipv4 unicast
 neighbor ISL activate
 redistribute connected route-map DC_LOCAL
 maximum-paths 64
 exit-address-family

// leaf02’s BGP configuration

log file /var/log/frr/frr.log

ip prefix-list DC_LOCAL_SUBNET 5 permit 10.1.0.0/16 le 26
ip prefix-list DC_LOCAL_SUBNET 10 permit 10.0.254.0/24 le 32

Using Interface Names as Neighbors | 43

route-map ACCEPT_DC_LOCAL permit 10
 match ip-address DC_LOCAL_SUBNET

router bgp 65001
 bgp router-id 10.0.254.2
 bgp log-neighbor-changes
 bgp no default ipv4-unicast
 timers bgp 3 9
 neighbor peer-group ISL
 neighbor ISL remote-as 65500
 neighbor ISL advertisement-interval 0
 neighbor ISL timers connect 5
 neighbor swp51 peer-group ISL
 neighbor swp52 peer-group ISL
 address-family ipv4 unicast
 neighbor ISL activate
 redistribute connected route-map DC_LOCAL
 maximum-paths 64
 exit-address-family

The configuration across the spines also looks the same, except for
changes to the router-id and neighbor’s ASN. Here is the result:

log file /var/log/frr/frr.log

ip prefix-list ACCRT 5 permit 10.1.0.0/16 le 26
ip prefix-list ACCRT 10 permit 10.0.254.0/24 le 32
route-map DC_LOCAL permit 10
 match ip-address ACCRT

router bgp 65500
 bgp router-id 10.0.254.254
 bgp log-neighbor-changes
 bgp no default ipv4-unicast
 timers bgp 3 9
 neighbor peer-group ISL
 neighbor ISL advertisement-interval 0
 neighbor ISL timers connect 5
 neighbor swp1 remote-as 65000
 neighbor swp1 peer-group ISL
 neighbor swp2 remote-as 65001
 neighbor swp2 peer-group ISL
 neighbor swp3 remote-as 65002
 neighbor swp3 peer-group ISL
 neighbor swp4 remote-as 65003
 neighbor swp4 peer-group ISL
 bgp bestpath as-path multipath-relax
 address-family ipv4 unicast
 neighbor ISL activate
 redistribute connected route-map DC_LOCAL

44 | Chapter 3: Building an Automatable BGP Configuration

 maximum-paths 64
 exit-address-family

The same routing policy is applied across the leaf and the spine.

The use of interface names instead of IP addresses is not limited just
to configuration. All the relevant show and clear commands (we talk
about these in Chapter 5) also can take interface names.

Using interface names instead of IP addresses supports the other
cardinal principle of good configuration: reduced duplication. With
both redistribute connected and neighbor statements, the only
place the IP address of the interface is specified is in the interface
configuration.

If you’re conversant with automation, you might wonder how
replacing IP addresses with interface names makes it more automa‐
tion friendly. Why can’t the use of variables to deal with the differ‐
ences between routers be sufficient? At the end of the day,
automation involves some sort of programming logic, and so
depending on the tool, the logic can be simple or complex. But sim‐
plicity in the automation code is crucial in reducing errors. Many
studies show that operator-caused errors are the second most com‐
mon reason for network outages. With automation, we introduce a
level of abstraction as well as the ability to wreak havoc across a
much larger number of routers instantaneously. For example, one
approach to cabling can be that the operator uses different ports on
different leaves to connect inter-switch links. Because the ports on
each node are different, using variables per node to define the
uplink ports can make for a bad physical network design. But these
variables create a level of abstraction and thereby mask the problem
if operators are not careful. With uniform cabling, the operator can
eliminate the need to define variables for the uplink ports across the
different nodes. Similarly, although not always possible, a configura‐
tion that is free of IP addresses means that the configuration can be
broadly used, such as reused across pods or in the installation of
new data centers.

Summary
This chapter fired the first shots at making BGP configuration more
automation friendly. First, we used routing policy to replace IP
addresses from individual network statements with a single redis
tribute connected directive with a route map that ensures that

Summary | 45

only the appropriate addresses are advertised. Next, building on the
small number of addresses covered by /30 and /31 subnets (which
makes it easy to determine the remote end’s IP address once the
local end’s IP address is known), we reduce the configuration to use
interface names instead of IP addresses to identify a peer.

However, we’re not yet done. What this configuration hides is that
interfaces still need IP address configuration—even if they’re hidden
from the BGP configuration and not duplicated. Also, the configu‐
ration still relies on knowledge of the peer’s ASN. In Chapter 4, we
eliminate both of these requirements.

46 | Chapter 3: Building an Automatable BGP Configuration

CHAPTER 4

Reimagining BGP Configuration

This chapter shows how router configuration can be reduced by
completely eliminating interface IP addresses and specifying the
remote-as of each neighbor. Both of these improvements will make
configuring a BGP router in the data center a snap, and automation
a breeze.

In Chapter 3, we showed how you could eliminate IP address usage
from the BGP configuration. However, the operator still needs to
configure IP addresses on the interfaces for BGP peering. Because
these interface addresses are never used for anything but BGP con‐
figuration and their information is never propagated via BGP, their
configuration is a meaningless holdover from the service provider
world in the data center. Another issue mentioned toward the end of
Chapter 3 about automating the configuration is the need to know
the remote-as of the peer.

After we eliminate these two requirements, we’re left with a configu‐
ration that is homogeneous and duplication-free across the nodes,
with the only node-specific content being the node’s ASN and its
router-id. In other words, the configuration is very automation
friendly, and simple.

To achieve these goals, we’ll need to understand a topic almost as
old as routing: unnumbered interfaces, and how we adapt this con‐
struct to BGP.

47

The Need for Interface IP Addresses and
remote-as
Because BGP runs on TCP/IP, it needs an IP address to create a con‐
nection. How can we identify this remote node’s address while at the
same time not allocating any IP addresses on interfaces? Answering
this question will involve understanding a lesser-known RFC and
the stateless configuration tools provided by IPv6. It also involves
understanding the real heart of routing.

The second problem is that every BGP configuration relies on
knowing the remote ASN. But this ASN is really required for only
one thing: to identify whether the session is governed by the rules of
internal BGP (iBGP) or external BGP (eBGP).

The Numbers on Numbered Interfaces
Is configuring IP addresses on an interface really that big of a deal?
How many of them can there be anyway?

Consider a simple two-tier Clos with 4 spines and 32 leaves—a fairly
common network. Each spine has 32 links, one to each leaf, and
there are 4 spines. This requires 4 * 32 * 2 = 256 IP addresses (4
spines * 32 interfaces * 2 addresses per interface, one for each end).
If the number of leaves were to become 96 instead of 32—again not
uncommon in mid-sized networks—the total number of interface IP
addresses we’d need would be 4 * 96 * 2 = 768. As we increase the
scale, say to 16 spines, the total number of addresses would rise to 16
* 96 * 2 = 3,072.

Although deriving these numbers algorithmically is possible, it can
be clunky and error prone. The automation code becomes trickier.
A very common approach people take is to store the interface
addresses as a list or group of variables, and in the automation pro‐
gram, read from these variable sto assign the addresses to interfaces.
This method becomes impossible to use.

48 | Chapter 4: Reimagining BGP Configuration

The sad part of all this is that these addresses are not used for any‐
thing but BGP sessions. So why not get rid of them entirely?

Philosophical Aside on Numbered Interfaces
Assigning an IP address to each addressable interface endpoint is a
fairly fundamental practice in a traditional Layer 3 (L3) design. But
this design leaves the question of who an IP address belongs to: the
interface or the node?

One practical question implied by this identity confusion is, “Can a
node respond to an Address Resolution Protocol (ARP) request
received on an interface for an IP address that is assigned to the
node but not assigned to that particular interface?” Routers
answered that question with a resounding “No.” If you want to
enable such behavior on a router, you need to enable a feature
called “proxy-arp.” Linux answered the same question with a
resounding “Yes.” The reasoning of the Linux implementers was
that they wanted to enable communication to the maximum extent
possible. So, the node is free to respond to an ARP request for any
IP address it owns, no matter which interface on which the ARP
request is received.

The design of Internet Control Message Protocol (ICMP) further
cemented the idea that interfaces needed IP addresses. ICMP
reports only the IP address of the endpoint where packet forward‐
ing failed. It does not, for example, report the DNS name of the
endpoint. Why does this matter, you ask? Traceroute. Traceroute is
an old, powerful, and popular tool that people use to debug connec‐
tivity problems in the network. If the ICMP response reports the
interface’s IP address, it is possible to identify not only the node, but
also the incoming interface on which the poor packet was rejected.
This information then can be used to find the root cause for the
lack of connectivity. One of the most frequent questions I am asked
is whether traceroute works with unnumbered interfaces (yes, it
does, and you can see it for yourself by using the code posted on
GitHub).

Finally, ensuring that the two ends of an interface were assigned
addresses from the same subnet could be a poor man’s way to verify
proper cabling.

The Numbers on Numbered Interfaces | 49

Unnumbered Interfaces
Early network architects also had explored the other fork in this
design decision: not assigning a unique IP address to every interface
of a node. An interface without an IP address of its own was called
an “unnumbered” interface.

It is not that the interface doesn’t have an IP address; it borrows its
IP address from another interface. But if the interface from which
the IP address is borrowed fails, its IP address can no longer be bor‐
rowed. To avoid having interfaces suddenly lose their IP addresses,
interfaces borrow the IP address from an interface that never fails:
the loopback interface.

Routers can respond to ARPs on unnumbered interfaces with the
received interface’s local MAC address because the interface has an
IP address, even if borrowed. ICMP, with traceroute, still works. But,
if an IP address is no longer unique on a node, don’t we lose the
ability to identify the interface on which the packet entered a router?

Clos networks are predominantly built with just a single link
between each pair of nodes. So, it is trivial to identify the links
between nodes and thus derive the identity of either the incoming
interface or the outgoing interface. If a Clos network does have mul‐
tiple parallel links between nodes, it is difficult to identify the spe‐
cific interface among the parallel links at the root of a connectivity
issue. However, multiple parallel links between nodes in a Clos net‐
work is not common due to various reasons, which are discussed in
Chapter 1.

So how do routing protocols deal with unnumbered interfaces?
OSPF, which runs over IP, works fine. The original OSPF RFC pro‐
vided enough guidance on how to make this scenario work. Even
though most vendors don’t implement it, the open source routing
suite FRRouting supports the same practice. Unnumbered OSPF is
deployed in production at many sites. IS-IS, which does not even
run on IP, also works fine with unnumbered interfaces.

BGP Unnumbered
All of this is well and good, but how can BGP work in a world
without interface IP addresses?

50 | Chapter 4: Reimagining BGP Configuration

In the routing protocol world, there is a chicken-and-egg problem.
If the routing protocol is how you advertise reachability to a route,
how does a routing protocol itself know how to reach its peer? Many
protocols solve this problem by relying on a link-specific multicast
address (the multicast is restricted to be distributed only on the
link). BGP cannot do this because BGP relies on TCP, which
requires unicast packets, not multicast. BGP’s solution is to use a
shared subnet across the links of the interface connecting the
routers.

Remember that routing is required only if the destina‐
tion IP address is in a different subnet from the source
IP address. For example, in a 10.0.0.0/24 subnet, traffic
within the same subnet, say 10.0.0.1 and 10.0.0.10, will
flow without requiring any further routing configura‐
tion. IP-connected systems use the ARP protocol to
determine reachability within a subnet. A packet from
10.0.0.1 to 10.0.0.10 won’t require routing, but a packet
from 10.0.0.1 to 10.0.1.1 will. The route for the
10.0.0.0/24 on the interface is called a connected route
because the subnet is assumed to be directly reachable
(or connected) on that link.

Returning to how BGP peers manage to communicate, traditional
eBGP configurations have used the connected route on an interface
to reach a neighbor without further configuration. If the peer’s IP
address is not reachable via a connected subnet, the router doesn’t
know how to reach the peer’s IP address without further configura‐
tion (or by running another routing protocol that announces that
the address). For example, if every node was assigned only a /32 IP
address (where /32 implies that the node is the only entity in that
network), BGP would be unable to communicate with the peer. To
reach the peer’s address, a route for that explicit /32 is needed. Such
an additional configuration places further undue burden on the
user. This statically configured route is on the peers of the node,
which means the user must know which port on each node the
peer’s route is on to configure the static map.

BGP has some other options, such as using dynamic neighbors
(which we touch upon in Chapter 6), but none of them simplify
configuration in a meaningful way for the user.

BGP Unnumbered | 51

So, how can we, without user configuration and using interface
addresses, discover the peer’s IP address?

Enter IPv6, and an obscure standard, RFC 5549.

IPv6 Router Advertisement
The IPv6 architects designed IPv6 to work as much as possible
without explicit configuration. To this end, every link in an IPv6
network is automatically assigned an IP address that is unique only
to that link. Such an address is called the link local IPv6 address. The
link local address (LLA) is guaranteed to be reachable only by
directly connected peers, and only on that interface. Typically, an
LLA is derived from the MAC address on the link.

To ensure that hosts automatically discover neighboring routers, a
new link-level protocol called router advertisement (RA) was intro‐
duced. When enabled on an interface, RA periodically announces
the interface’s IPv6 addresses, including the LLA. Thus, one end can
automatically determine the other end’s IPv6 address.

Both IPv6 and RA are universally implemented these days on both
hosts and routers. So, this seems like a step in the right direction of
making peer addresses automatically discoverable.

To be clear, the use of IPv6 LLA does not require operators to begin
deploying IPv6 in their networks. There is also no tunneling of any
sort involved, IPv4 in IPv6 or any other, in what we’re attempting to
use here. The IPv6 LLA is used only to establish a TCP connection
for starting a BGP session. Besides enabling IPv6 on a link, which is
typically enabled automatically, and the enabling of the IPv6 router
advertisement on the link, no other knowledge of IPv6 is expected
of the operator.

Even though the peer’s IP address has been automatically discovered
and a BGP session can be established, this isn’t enough to achieve a
completely working network.

RFC 5549
Even though we now potentially can establish a BGP peering
without requiring an interface IP address, advertising routes also
requires a way to specify how to reach the router advertising the
routes. In BGP, this is signaled explicitly in the route advertisement
via the NEXTHOP attribute. The previous section showed how this

52 | Chapter 4: Reimagining BGP Configuration

https://tools.ietf.org/rfc/rfc5549.txt

could work together with RA to establish a BGP session over IPv6.
We can achieve our unnumbered interface goal if an IPv4 route can
use an IPv6 address as the next hop.

As explained in Chapter 1, BGP is a multiprotocol routing suite and
allows advertisements and withdrawals of multiple address families
to be carried over a single connection. Thus, BGP IPv4 UPDATE
messages can be transported over an IPv6 TCP connection, just like
IPv6 UPDATE messages can be transported over an IPv4 TCP con‐
nection. Advertising IPv4 or IPv6 routes in this case, does not
involve any form of tunneling, automatic or otherwise.

In the UPDATE message advertising reachability to routes, BGP
includes the nexthop IP address associated with the routes being
announced. In the case of IPv4, this is carried as the NEXTHOP
attribute in the main attributes section of a BGP UPDATE message
(attributes are like Post-it notes that provide additional information
about the route being advertised). The nexthop address is of the
same family as the route itself. In other words, IPv4 routes are
announced with IPv4 nexthops and IPv6 routes are announced with
IPv6 nexthops. When carrying an IPv4 route on an eBGP session on
an interface without an IPv4 address, what is the nexthop IP address
to announce? The only address available on that interface is the IPv6
LLA. Enter RFC 5549.

RFC 5549 is a somewhat obscure RFC, invented in the early years of
a new century. Its purpose is to allow the advertisement of an IPv4
route and routing of an IPv4 packet over a pure IPv6 network. Thus,
it provides a way to carry IPv4 routes with an IPv6 nexthop. You
read that right: IPv4 routes with a nexthop that is an IPv6 address.

Here’s a quick recap of how routing works to understand this. Imag‐
ine that the route entry for 10.1.1.0/24 is with a nexthop of
20.1.1.1/30 and an outgoing interface of swp1.

1. On receiving a packet destined to 10.1.1.1, routing uses this
route entry and decides that the nexthop’s IP address is
20.1.1.1/30, and that this is our device swp1.

2. To deliver the packet to 20.1.1.1, the router needs 20.1.1.1’s cor‐
responding MAC address. If the router does not have an ARP
entry for 20.1.1.1 in its ARP cache, it runs arp to get the MAC
address of 20.1.1.1 on interface swp1.

BGP Unnumbered | 53

https://tools.ietf.org/rfc/rfc5549.txt

3. The ARP reply from the neighboring router populates the ARP
cache with the MAC address of 20.1.1.1 on interface swp1.

4. The router then sticks this MAC address as the destination
MAC address on the packet, with the source MAC address of
interface swp1, and sends the packet on its merry way.

Except for getting the MAC address to put on the packet, the nex‐
thop IP address is not used in the packet at all.

In case of IPv6, as well, the nexthop IPv6 address is used to identify
the nexthop MAC address, using IPv6’s equivalent of ARP: Neigh‐
bor Discovery (ND). Even in IPv6, forwarding to the original desti‐
nation involves only the nexthop’s MAC address. The nexthop IP
address is used only to get the nexthop’s MAC address.

RFC 5549 builds on this observation and provides an encoding
scheme to allow a router to advertise IPv4 routes with an IPv6 nex‐
thop.

Forwarding with RFC 5549
But, wait, you say, astute reader. The routing table itself is structured
around the assumption that each IPv4 route has an IPv4 nexthop,
whereas an IPv6 route has an IPv6 nexthop. RFC 5549 itself doesn’t
do anything except allow you to work around a BGP issue. Continu‐
ing further, you say on a roll, won’t this require that IPv4 route for‐
warding reach into the IPv6 part of the stack, breaking layering,
protocol isolation, and goodness knows what else? Won’t the solu‐
tion require hardware support, given that the hardware does pretty
much what a software implementation does in routing packets?

A naive implementation would indeed require all that. But then, one
does need not be so naive. Although RFC 5549 has been imple‐
mented in a few traditional routers, access to the open source
FRRouting suite allows us to examine closer how a non-naive imple‐
mentation works.

FRRouting implements IPv6 RA natively. IPv6 RA has an option to
carry the sender’s MAC address, as well. FRRouting uses this option
to announce its own LLA and MAC address. On receiving an RA
packet, the neighboring node’s RA code in FRRouting gets the MAC
address and the associated IPv6 LLA. Now that the interface’s peer‐
ing address is known, FRRouting kicks BGP into action to start con‐

54 | Chapter 4: Reimagining BGP Configuration

nection establishment. This is also shown by the packet exchange
timeline diagram in Figure 4-1.

Figure 4-1. BGP unnumbered packet timeline sequence

After a connection has been successfully established, BGP receives a
route advertisement for the aforementioned 10.1.1.0/24 from the
peer with the peer’s IPv6 LLA (and global IPv6 address if one is con‐
figured). If BGP selects this path as the best path to reach
10.1.1.0/24, it passes this route down to the Routing Information
dataBase (RIB) process (called zebra in FRRouting), with the nex‐
thop set to the IPv6 LLA, this nexthop information being received in
the BGP UPDATE message.

RIB is a collection of all routes received from every
routing protocol running on the node and statically
configured routes. If there are multiple announcers for
a route, the RIB process picks one with the lowest
value of a field called distance. There are default values
for distance for each protocol, but the user can change
them, as well.

On receiving a route for 10.1.1.0/24 with an IPv6 LLA, assume that
the RIB picks this as the best route with which to populate the for‐
warding table. The RIB process now consults its database to see

BGP Unnumbered | 55

whether it has the information for the MAC address associated with
this IPv6 LLA. Let this MAC address be 00:00:01:02:03:04. The RIB
process now adds a static ARP entry for 169.254.0.1 with this MAC
address, pointing out the peering interface. 169.254.0.1 is an IPv4
LLA, although it is not automatically assigned to an interface the
way IPv6 LLA is. FRRouting assumes that 169.254.0.1 is reserved (as
of this writing, this cannot be changed through a configuration
option). The reason for the static ARP entry is so that the router
cannot run ARP to get this address; this IP address was assigned by
the router implicitly without its neighbor knowing anything about
this assignment; thus, the neighbor cannot respond to the ARP,
because it doesn’t have the IP address assigned to the interface.

The RIB process then pushes the route into the kernel routing table
with a nexthop of 169.254.0.1 and an outgoing interface set to that
of the peering interface. So, the final state in the tables looks like
this:

ROUTE: 10.1.1.0/24 via 169.254.0.1 dev swp1
ARP: 169.254.0.1 dev swp1 lladdr 00:00:01:02:03:04 PERMANENT

At this point, everything is set up for packet forwarding to work
correctly. More specifically, the packet forwarding logic remains
unchanged with this model.

If the link goes down or the remote end stops generating an RA, the
local RA process yanks out the LLA and its associated MAC from
the RIB. This causes the RIB process to decide that the nexthop is no
longer reachable, which causes it to notify the BGP process that the
peer is no longer reachable. RIB also tears down the static ARP entry
that it created. Terminating the session causes BGP to yank out the
routes pointing out this peering interface.

To summarize:

• BGP unnumbered uses the interface’s IPv6 LLA to set up a BGP
session with a peer.

• The IPv6 LLA of the remote end is discovered via IPv6’s Router
Advertisement (RA) protocol.

• RA provides not only the remote end’s LLA, but also its corre‐
sponding MAC address.

• BGP uses RFC 5549 to encode IPv4 routes as reachable over an
IPv6 nexthop, using the IPv6 LLA as the nexthop.

56 | Chapter 4: Reimagining BGP Configuration

• The RIB process programs a static ARP entry with a reserved
IPv4 LLA, 169.254.0.1, with the MAC address set to the one
learned via RA.

• BGP hands down to the RIB process IPv4 routes with the IPv6
LLA as the nexthop.

• The RIB process converts the nexthop to 169.254.0.1 and the
outgoing interface before programming the route in the for‐
warding table.

BGP Capability to Negotiate RFC 5549 Use
Because encoding IPv4 routes with an IPv6 nexthop is not the usual
model, RFC 5549 defines a new capability, called extended nexthop,
to negotiate the use of RFC 5549 over a peering session. As is com‐
mon with BGP capabilities, both sides must advertise their capabil‐
ity to understand RFC 5549 in order for it to be used in the BGP
peering.

FRRouting automatically enables RA on an interface and enables the
sending of the extended nexthop BGP capability, when a BGP peer‐
ing is set up to be based on an interface that does not have an IPv4
address.

Interoperability
Every eBGP peer sets the NEXTHOP to its own IP address before
sending out a route advertisement.

Figure 4-2 shows a hypothetical network in which routers B and D
support RFC 5549, whereas routers A and C do not. So, there are
interface IP addresses on the links between B and A and between B
and C. When A announces reachability to 10.1.1.0/24, it provides its
peering interface’s IPv4 address as the nexthop. When B advertises
reachability to 10.1.1.0/24, it sets its IPv6 LLA as the nexthop when
sending the route to D, and sets its interface’s IPv4 address as the
nexthop when sending the route to C.

In the reverse direction, if D announces reachability to a prefix
10.1.2.0/24, it uses its interface’s IPv6 LLA to send it to B. When B
announces this to A and C, it sets the nexthop to be that of the IPv4
address of the peering interface.

BGP Unnumbered | 57

Figure 4-2. Interoperability with RFC 5549

A remote-as By Any Other Name
After eliminating interface addresses, the only thing remaining to
accomplish the goal of the simple, cookie-cutter configuration is the
need to specify the neighbor’s ASN via the remote-as keyword of a
BGP neighbor configuration.

There are two primary uses for specifying neighbor’s ASN in the
neighbor specification:

• In the spirit of connecting across administrative domains, and
where harm on a large financial and global scale is possible by
connecting to the wrong administrative domain accidentally, it
is critical to verify operator intent.

• To identify whether the BGP session will be governed by iBGP
rules or eBGP rules.

Within the data center, because we’re not crossing administrative
domains, security is no longer a compelling reason to specify the
ASN. And, if the only reason is to identify what rules govern the ses‐
sion, that can be done by a simple non-neighbor-specific field.

Based on this reasoning, FRRouting added two new choices to the
remote-as keyword: external and internal. “External” means that
you expect to set up an eBGP connection with this neighbor,
whereas “internal” means that you expect to set up an iBGP connec‐

58 | Chapter 4: Reimagining BGP Configuration

tion. In reality, you can even ignore this specification because you
can identify iBGP versus eBGP by the ASN received in the BGP
OPEN message. However, the remote-as command helps kick off
creation of the BGP peer data structure, as it’s easy to make a typo in
the neighbor specification in one of the commands and accidentally
create a new BGP peer. For example, if there were a
peer169.254.1.11 and there was a typo in one of the neighbor com‐
mands—neighbor 169.254.11.1 timers connect 9 instead of
neighbor 169.254.1.11 timers connect 9—you don’t want BGP
to begin spinning up a new neighbor session.

Summary
By eliminating interface IP addresses and the specification of the
exact remote-as in the neighbor command specification, we can
arrive at a configuration, listed in Example 4-1, that looks remarka‐
bly similar across the leaves and spines illustrated in Figure 3-1. The
only differences between the nodes are shown in bold in the
example.

Example 4-1. Final BGP configuration for a leaf and spine in a Clos
network

// leaf01 configuration

log file /var/log/frr/frr.log
ip prefix-list DC_LOCAL_SUBNET 5 permit 10.1.0.0/16 le 26
ip prefix-list DC_LOCAL_SUBNET 10 permit 10.0.254.0/24 le 32
route-map ACCEPT_DC_LOCAL permit 10
 match ip-address DC_LOCAL_SUBNET

router bgp 65000
 bgp router-id 10.0.254.1
 neighbor peer-group ISL
 neighbor ISL remote-as external
 neighbor swp51 interface peer-group ISL
 neighbor swp52 interface peer-group ISL
 address-family ipv4 unicast
 neighbor ISL activate
 redistribute connected route-map ACCEPT_DC_LOCAL

// spine01 configuration

log file /var/log/frr/frr.log
ip prefix-list DC_LOCAL_SUBNET 5 permit 10.1.0.0/16 le 26
ip prefix-list DC_LOCAL_SUBNET 10 permit 10.0.254.0/24 le 32

Summary | 59

route-map ACCEPT_DC_LOCAL permit 10
 match ip-address DC_LOCAL_SUBNET

router bgp 65534
 bgp router-id 10.0.254.254
 neighbor peer-group ISL
 neighbor ISL remote-as external
 neighbor swp1 interface peer-group ISL
 neighbor swp2 interface peer-group ISL
 neighbor swp3 interface peer-group ISL
 neighbor swp4 interface peer-group ISL
 address-family ipv4 unicast
 neighbor ISL activate
 redistribute connected route-map ACCEPT_DC_LOCAL

This is a far cry from the original node-specific BGP configuration.
The configuration is also extremely trivial to automate using tools
such as Ansible, Puppet, or Chef. This is due not only to the elimi‐
nation of just about every router-specific information via the use of
interface names, but also, more important, each router’s configura‐
tion contains information that is completely local to the router, with
no information about the peer.

We’ve so far focused on configuring BGP in a Clos topology. We
have not described how to view the results of our configuration,
manage BGP after the initial configuration, or how to configure
BGP to connect a Clos topology to the external world. These are the
focus of Chapter 5.

60 | Chapter 4: Reimagining BGP Configuration

CHAPTER 5

BGP Life Cycle Management

So far, this book has laid the groundwork to create a simple, auto‐
matable configuration for a data center network using BGP. But we
have just gone through the initial configuration of a leaf or spine
router. As any network operator knows, the job is far from done
after the network is deployed. Routers need to be upgraded, security
patches need to be applied, new routers need to be rolled in, and
heaven help us all, what if BGP refuses to behave? This chapter
addresses these questions.

Useful show Commands
So far, we’ve only discussed configuring BGP, without viewing the
fruits of our labor. This section covers two of the most useful and
common commands used to view BGP’s status. This section is
intended to help network operators new to BGP get off the ground
(though some old masters might learn a thing or two that’s new, as
well), and to highlight differences from the traditional operation,
not be a complete reference. There are lots of online and printed
documentation on the various show commands used in BGP.

Displaying BGP Session Information
The most popular command to see BGP’s status is show ip bgp sum
mary. Figure 5-1 shows sample output for the command for the ref‐
erence topology in this book (based on FRRouting).

61

https://frrouting.org/

Figure 5-1. Showing the network

This command shows only the output of IPv4 BGP sessions. When
BGP began life, there was only IPv4 and the keyword ip was unam‐
biguous with respect to what protocol it referred to. Since the advent
of IPv6, and with the evolution of BGP to support multiple proto‐
cols, we need a command to display IPv6 sessions, as well. In line
with the AFI/SAFI model, the show bgp commands have evolved to
support show bgp ipv4 unicast summary and show bgp ipv6 uni
cast summary. For many operators, however, sheer muscle memory
forces them to type show ip bgp summary.

Following are the key points to note in this output:

• All the neighbors with whom this router is supposed to peer are
listed (unlike with other protocols such as OSPF).

• The state of each session is listed. If a session is in the Estab‐
lished state, instead of the state name, the number of prefixes
accepted from the peer is shown.

• Every session’s uptime is shown (or its downtime, if the session
is not in Established state).

• Information such as the node’s router ID and ASN is also
shown.

The version of the BGP (the “V” column in Figure 5-1) is archaic,
given that all BGP implementations in use today, especially in the
data center, are running version 4 of the protocol. The remaining
fields are mostly uninteresting unless there’s a problem.

One difference to note in the previous output compared to what you
might see in just about every other implementation (except
ExaBGP) is the display of the hostname of the peer. This is based on
an IETF draft that defined a new BGP capability, called hostname,
which allows operators to advertise the hostname along with the

62 | Chapter 5: BGP Life Cycle Management

http://bit.ly/2s7uqUH

BGP open message. This makes for simpler debugging because it is
easier to remember hostnames than interface names. The Internet
Assigned Numbers Authority (IANA) has issued a standard capabil‐
ity ID to be used for this capability.

So, any show or clear command can take a hostname instead of a
neighbor. The use of hostnames in commands potentially simplifies
troubleshooting, because it is far more intuitive to say “show me the
state of my session with host x” than “show me the state of my ses‐
sion with IP address x,” or “show me the state of my session on inter‐
face x.”

In FRRouting, we can use hostnames in any command that doesn’t
configure a BGP session. The reason for the restriction is that the
hostname is not known until BGP capabilities are negotiated and
the hostnames exchanged.

For detailed information about a neighbor, you can use the com‐
mand show ip bgp neighbors neighbor_name. The output of this
command contains additional information, such as the last time the
session was reset, the reason for the reset, and the number of BGP
UPDATE messages sent and received. Example 5-1 presents a sam‐
ple output from leaf01 for the neighbor spine01.

Example 5-1. Sample output showing details of BGP peering session
with a neighbor

BGP neighbor on swp51: fe80::4638:39ff:fe00:5c, remote AS 65000,
local AS 64513, external link
Hostname: spine01
 Member of peer-group fabric for session parameters
 BGP version 4, remote router ID 10.254.0.254
 BGP state = Established, up for 00:02:36
 Last read 00:00:00, Last write 00:02:35
 Hold time is 9, keepalive interval is 3 seconds
 Neighbor capabilities:
 4 Byte AS: advertised and received
 AddPath:
 IPv4 Unicast: RX advertised IPv4 Unicast and received
 IPv6 Unicast: RX advertised IPv6 Unicast and received
 Extended nexthop: advertised and received
 Address families by peer:
 IPv4 Unicast
 Route refresh: advertised and received(old & new)
 Address family IPv4 Unicast: advertised and received
 Address family IPv6 Unicast: advertised and received
 Hostname Capability: advertised and received

Useful show Commands | 63

 Graceful Restart Capabilty: advertised and received
 Remote Restart timer is 120 seconds
 Address families by peer:
 none
 Graceful restart informations:
 End-of-RIB send: IPv4 Unicast, IPv6 Unicast
 End-of-RIB received: IPv4 Unicast, IPv6 Unicast
 Message statistics:
 Inq depth is 0
 Outq depth is 0
 Sent Rcvd
 Opens: 4 5
 Notifications: 4 2
 Updates: 40 25
 Keepalives: 26962 26959
 Route Refresh: 0 0
 Capability: 0 0
 Total: 27010 26991
 Minimum time between advertisement runs is 0 seconds

 For address family: IPv4 Unicast
 fabric peer-group member
 Update group 1, subgroup 1
 Packet Queue length 0
 Community attribute sent to this neighbor(both)
 5 accepted prefixes

 For address family: IPv6 Unicast
 fabric peer-group member
 Update group 2, subgroup 2
 End-of-RIB send: IPv4 Unicast, IPv6 Unicast
 End-of-RIB received: IPv4 Unicast, IPv6 Unicast
 Message statistics:
 Inq depth is 0
 Outq depth is 0
 Sent Rcvd
 Opens: 4 5
 Notifications: 4 2
 Updates: 40 25
 Keepalives: 26988 26985
 Route Refresh: 0 0
 Capability: 0 0
 Total: 27036 27017
 Minimum time between advertisement runs is 0 seconds

 For address family: IPv4 Unicast
 fabric peer-group member
 Update group 1, subgroup 1
 Packet Queue length 0
 Community attribute sent to this neighbor(both)
 5 accepted prefixes

64 | Chapter 5: BGP Life Cycle Management

 For address family: IPv6 Unicast
 fabric peer-group member
 Update group 2, subgroup 2
 Packet Queue length 0
 Community attribute sent to this neighbor(both)
 0 accepted prefixes

 Connections established 3; dropped 2
 Last reset 00:03:57, due to NOTIFICATION sent (Cease/Connection
 collision resolution)
 Message received that caused BGP to send a NOTIFICATION:
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
 00660104 FDE80009 0AFE00FE 49020601
 04000100 01020601 04000200 01020805
 06000100 01000202 02800002 02020002
 06410400 00FDE802 0A450800 01010100
 02010102 0B490907 7370696E 65303100
 02044002 0078
Local host: fe80::4638:39ff:fe00:5b, Local port: 179
Foreign host: fe80::4638:39ff:fe00:5c, Foreign port: 52191
Nexthop: 10.254.0.1
Nexthop global: fe80::4638:39ff:fe00:5b
Nexthop local: fe80::4638:39ff:fe00:5b
BGP connection: shared network
BGP Connect Retry Timer in Seconds: 10
Read thread: on Write thread: off

Displaying Routes Exchanged
Another common command is to see the list of routes computed
and in BGP’s routing table. The command for this is show ip bgp or
show bgp ipv4 unicast. Figure 5-2 shows the output of this com‐
mand on leaf01 of the reference topology.

The key fields are the prefix itself, the possible nexthops, and the
AS_PATH associated with each prefix. This screen displays only 8
out of 12 prefixes because the other two were not accepted. Frequent
causes for rejecting prefixes are either policy decisions or because an
AS_PATH loop was detected (AS_PATH loop was detected in this
case). The asterisk (*) at the beginning of a line indicates that the
route is valid; that is the nexthop is reachable. Following that, an
equal sign (=) indicates that the route has multiple usable equal-cost
paths.

Useful show Commands | 65

Figure 5-2. BGP routes as seen on leaf01 of the reference topology

You can use the same command with a specific prefix to get the
details of the received prefix advertisement. For example, Figure 5-3
depicts the output of the command show ip bgp 10.254.0.3.

Figure 5-3. Advertised prefix

Using this, a network operator can examine closely to determine
details about a prefix, such as what attributes were received for a
prefix, and to whom else the prefix was advertised.

Connecting to the Outside World
One of the things we haven’t discussed is how we advertise the
routes outside the data center. This task also typically falls under the
purview of a data center network operator.

66 | Chapter 5: BGP Life Cycle Management

Let’s use the reference topology we’ve used throughout this book, as
presented in Figure 5-4.

Figure 5-4. Reference topology used in this book

exit01 and exit02 are the two nodes that demarcate the inside of the
data center from the outside. They’re connected to the node titled
internet; this is the data center’s edge switch, which is the switch
that peers with the external world. exit01 and exit02 are called bor‐
der leaves or exit leaves (the border leaves maybe in a border pod in a
three-tier Clos network as described in Chapter 1).

Border leaves serve two primary functions: stripping off the private
ASNs, and optionally aggregating the internal data center routes and
announcing only the summary routes to the edge routers.

You strip the private ASNs from the path via the command neigh
bor neighbor_name remove-private-AS all.

You can summarize routes and announce only the aggregate via the
command aggregate-address summary-route summary-only.

The keyword summary-only specifies that the individual routes must
not be sent. Without that option, summary routes as well as individ‐
ual routes are advertised. When a route is aggregated and only the
summary route announced, the entire AS_PATH is also removed
unless specified otherwise.

Connecting to the Outside World | 67

Scheduling Node Maintenance
The life cycle of a router typically involves upgrading the software.
The upgrade might cover the entire router, just the routing software,
or other relevant software that causes the router to lose its peering
session with the neighbors as it restarts. If a router’s neighbors con‐
tinue to forward traffic while the router restarts, traffic can be drop‐
ped and cause unnecessary traffic loss. To avoid this, especially when
the operator knows that the node is going to be taken down, it is
useful to allow the neighbors to route around the router. For exam‐
ple, if spine01 is going to be upgraded, you should ask all the leaves
to ignore spine01 in their best path computation and send all traffic
to only spine02 during this time to ensure a smooth traffic flow.
Similarly, in the case of the leaves with dual-attached servers, it
would be useful for the spines to avoid sending traffic to the leaf
undergoing the upgrade and use only the working leaf. In this fash‐
ion, routers can be upgraded, one box at a time, without causing
unnecessary loss of traffic.

As discussed in Chapter 1, a modern data center has more than two
spine nodes, with four being the most common especially in
medium-to-large enterprises. With four nodes, when a spine is
taken out of service for maintenance, the network can keep hum‐
ming along at 75 percent capacity. In a traditional enterprise net‐
work design, there are only two spine nodes, which would result in a
more significant loss of capacity when a single spine is taken out of
service. It is true that the servers would operate at only half their
capacity if they were dual-attached. This is why some large enterpri‐
ses use dual-attached servers only for failover, not with both links
active at the same time. Web-scale data centers address this issue by
only singly connecting servers, and having so many racks that taking
down a single rack is not a big deal. These super-large networks also
operate with 16 or 32 spines and so the loss of a single spine results
in a drop of just 1/16 or 1/32 of the inter-switch capacity.

The most common and interoperable way to drain traffic is to force
the routes to be advertised from the node with an additional ASN
added to the advertisement, causing the AS_PATH length to
increase in comparison to the node’s peers. For example, a route
advertised by leaf01 is seen by leaf03 as having multiple paths, one
via spine01 and the other via spine02, both with AS_PATH length of

68 | Chapter 5: BGP Life Cycle Management

2. If we want to upgrade spine02, we can increase its AS_PATH
length, and leaf03 will stop using spine02 to reach leaf01.

Typically, the node’s own ASN is used to prepend additional ASNs.
Here is an example of a configuration snippet on spine01 prepend‐
ing its own ASN in its announcements to all neighbors:

route-map SCHED_MAINT permit 10
 set as-path prepend 65000 65000

neighbor ISL route-map SCHED_MAINT out

Figure 5-5 shows the output for the same prefix used in Figure 5-4,
except that one of the spines, spine02, has announced a path that is
longer than the other one, and as a result that path has not been
selected.

There are other methods to indicate that a BGP router is failing, but
not all implementations support these methods, and so I have
chosen to talk about the most supported model.

Figure 5-5. A path not chosen

Debugging BGP
Like any other software, BGP will occasionally behave unpredictably
due to a bug or to a misunderstanding by the operator. A common
solution to such a problem is to enable debugging and look at the
debug logs to determine the cause of the unpredictable behavior.

Different router software provides different knobs to tweak during
debugging. In FRRouting, the command debug bgp is the gateway

Debugging BGP | 69

to understanding what’s going on with BGP. There are many options
listed under debug, but three in particular are key:

neighbor-events

This is used to debug any session and bring up issues. The
debugging can be for all sessions, or for only a specific session.
Information such as which end initiated the connection, the
BGP state machine transitions, and what capabilities were
exchanged can all be seen in the debug log with this option
enabled.

bestpath

This is used to debug bestpath computation. If you enable it for
a specific prefix, the logs will show the logic followed in select‐
ing the bestpath for a prefix, including multipath selection.
Figure 5-6 shows an example of the snippet from a log. This is
for debugging the same prefix shown in Figure 5-3 and
Figure 5-5. As seen, you also can use the debug logs to gain a
better understanding of how BGP’s bestpath selection logic
works—in this case, how a longer AS_PATH prevents a path
from being selected.

Figure 5-6. Sample debug log showing bestpath computation

Updates

This is used to debug problems involving either advertising or
receiving advertisements of prefixes with a neighbor. You can
specify a single prefix, all prefixes, or all prefixes for a single
neighbor in order to more closely examine the root cause of a
problem. The debug logs show you not only the prefixes that
were accepted, but also the ones that were rejected. For exam‐
ple, given that the spines share the same ASN, the loopback IP
address of a spine cannot be seen by the other spines. To see this
in action, by issuing debug bgp updates prefix

10.254.0.253/32, we get the output shown by Example 5-1 in
the log file.

70 | Chapter 5: BGP Life Cycle Management

Example 5-2. Prefix rejected because of ASN loop

2017/05/20 15:09:54.112100 BGP: swp2 rcvd UPDATE w/ attr: , origin i,
 mp_nexthop fe80::4638:39ff:fe00:2e(fe80::4638:39ff:fe00:2e),
 path 64514 65000 65000 65000 64515
2017/05/20 15:09:54.112165 BGP: swp2 rcvd UPDATE about 10.254.0.3/32
 -- DENIED due to: as-path contains our own AS;
2017/05/20 15:09:54.113438 BGP: swp3 rcvd UPDATE w/ attr: , origin i,
 mp_nexthop fe80::4638:39ff:fe00:57(fe80::4638:39ff:fe00:57),
 metric 0, path 64515
2017/05/20 15:09:54.113471 BGP: swp3 rcvd 10.254.0.3/32
2017/05/20 15:09:54.113859 BGP: swp4 rcvd UPDATE w/ attr: , origin i,
 mp_nexthop fe80::4638:39ff:fe00:43(fe80::4638:39ff:fe00:43),
 path 64516 65000 65000 65000 64515
2017/05/20 15:09:54.113886 BGP: swp4 rcvd UPDATE about 10.254.0.3/32
 -- DENIED due to: as-path contains our own AS;
2017/05/20 15:09:54.114135 BGP: swp1 rcvd UPDATE w/ attr: , origin i,
 mp_nexthop fe80::4638:39ff:fe00:5b(fe80::4638:39ff:fe00:5b),
 path 64513 65000 65000 65000 64515
2017/05/20 15:09:54.114157 BGP: swp1 rcvd UPDATE about 10.254.0.3/32
 -- DENIED due to: as-path contains our own AS;
2017/05/20 15:09:54.162440 BGP: u3:s6 send UPDATE w/ attr: , origin i,
 mp_nexthop ::(::), path 64515
2017/05/20 15:09:54.162788 BGP: u3:s6 send UPDATE 10.254.0.3/32
2017/05/20 15:09:54.214657 BGP: swp4 rcvd UPDATE w/ attr: , origin i,
 mp_nexthop fe80::4638:39ff:fe00:43(fe80::4638:39ff:fe00:43),
 path 64516 65000 64515
2017/05/20 15:09:54.214803 BGP: swp4 rcvd UPDATE about 10.254.0.3/32
 -- DENIED due to: as-path contains our own AS;
2017/05/20 15:09:54.214914 BGP: swp2 rcvd UPDATE w/ attr: , origin i,
 mp_nexthop fe80::4638:39ff:fe00:2e(fe80::4638:39ff:fe00:2e),
 path 64514 65000 64515
2017/05/20 15:09:54.214933 BGP: swp2 rcvd UPDATE about 10.254.0.3/32
 -- DENIED due to: as-path contains our own AS;
2017/05/20 15:09:54.216418 BGP: swp1 rcvd UPDATE w/ attr: , origin i,
 mp_nexthop fe80::4638:39ff:fe00:5b(fe80::4638:39ff:fe00:5b),
 path 64513 65000 64515
2017/05/20 15:09:54.216449 BGP: swp1 rcvd UPDATE about 10.254.0.3/32
 -- DENIED due to: as-path contains our own AS;

Summary
This chapter provided information for some of the less frequent, but
nevertheless critical tools and tasks for managing and troubleshoot‐
ing BGP deployments in a data center. At this stage, you should
hopefully possess a good understanding of data center networks,
BGP, and how to configure and manage a Clos network in the data
center.

Summary | 71

Chapter 6 covers extending BGP routing all the way to the host,
something that is also increasingly being deployed as a solution in
the data center due to the rise in virtual services, among other uses.

72 | Chapter 5: BGP Life Cycle Management

CHAPTER 6

BGP on the Host

The advent of the modern data center revolutionized just about
everything we know about computing and networking. Whether it
be the rise of NoSQL databases, new application architectures and
microservices, or Clos networks with routing as the fundamental
rubric rather than bridging, they have each upended hitherto well-
regarded ideas. This also has affected how services such as firewalls
and load balancers are deployed.

This chapter examines how the new model of services shifts routing
all the way to the server, and how we configure BGP on the host to
communicate with the ToR or leaf switch.

Traditional network administrators’ jurisdiction ended at the ToR
switch. Server administrators handled server configuration and
management. In the new-world order, either separate server and
network administrators have been replaced by a single all-around
data center operator, or network administrators must work in con‐
junction with server administrators to configure routing on hosts, as
well. In either case, it is important for a data center operator to
ensure that the configuration of BGP on the host does not compro‐
mise the integrity of the network.

The Rise of Virtual Services
In traditional data center networks, the boundary between bridging
and routing, the L2–L3 gateway, was where services such as firewall
and load balancers were deployed. The boundary was a natural fit

73

because the boundary represented in some sense the separation of
the client from the server. It was logical to assign firewalls at this
boundary to protect servers from malicious or unauthorized clients.
Similarly, load balancers front-ended servers, typically web servers,
in support of a scale-out model. This design also extended to fire‐
walls, where load balancers front-ended a row of firewalls when the
traffic bandwidth exceeded the capacity of a single firewall.

These firewalls and load balancers were typically appliances, which
were usually scaled with the scale-in model; that is, purchasing
larger and larger appliances to support the increasing volume of
traffic.

The Clos network destroyed any such natural boundary, and with its
sheer scale, the modern data center made scale-in models impracti‐
cal. In the new world, the services are provided by virtual machines
(VMs) running on end hosts or nonvirtualized end hosts. Two pop‐
ular services provided this way are the load balancer and firewall
services. In this model, as the volume of traffic ebbs and flows, VMs
can be spun up or down dynamically to handle the changing traffic
needs.

Anycast Addresses
Because the servers (or VMs) providing a service can pop up any‐
where in the data center, the IP address no longer can be con‐
strained to a single rack or router. Instead, potentially several racks
could announce the same IP address. With routing’s ECMP for‐
warding capability, the packets would flow to one of the nearest
nodes offering the service. These endpoint IP addresses have no sin‐
gle rack or switch to which they can be associated. These IP
addresses that are announced by multiple endpoints are called any‐
cast IP addresses. They are unicast IP addresses, meaning that they
are sent to a single destination (as opposed to multidestination
addresses such as multicast or broadcast), but the destination that is
picked is determined by routing, and different endpoints pick differ‐
ent nodes offering the same service.

Subnets are typically assigned per rack. As we discussed in Chap‐
ter 1, 40 servers per rack result in the ToR announcing a /26 subnet.
But how does a ToR discover or advertise a nonsubnet address that
is an anycast service IP address? Static routing configuration is not
acceptable. BGP comes to the rescue again.

74 | Chapter 6: BGP on the Host

BGP Models for Peering with Servers
There are two models for peering with servers. The first is the BGP
unnumbered model outlined in Chapter 4. The second involves a
feature that BGP supports called dynamic neighbors. We’ll examine
each model, listing the pros and cons of both. But we begin by look‐
ing at what’s common to both models: the ASN numbering scheme,
and the route exchange between the server and the ToR.

ASN Assignment
The most common deployment I have seen is to dedicate an ASN
for all servers. The advantages of this approach are that it is simple
to configure and automate, and it simplifies identifying and filtering
routes from the server. The two main disadvantages of this approach
are 1) the complexity of the configuration on the server increases if
we need to announce anything more than just the default route to
the host, and 2) tracking which server announced a route becomes
trickier because all servers share the same ASN.

Another approach would be to assign a single ASN for all servers
attached to the same switch, but separate ASNs for separate
switches. In a modern data center, this translates to having a sepa‐
rate server ASN per rack. The benefit of this model is that it now
looks like the servers are just another tier of a Clos network. The
main disadvantages of this model are the same as the previous mod‐
el’s, though we can narrow a route announcement to a specific rack.

The final approach is to treat each server as a separate node and
assign separate ASNs for each server. Although a few customers I
know of are using this approach, it feels like overkill. The primary
benefits of this approach are that it perfectly fits the model prescri‐
bed for a Clos network, and that it is easy to determine which server
advertised a route. Given the sheer number of servers, using 4-byte
ASNs seems the prudent thing to do with this approach.

Route Exchange Model
Because each host is now a router of first order, all sorts of bad
things can happen if we do not control what routes a switch accepts
from a host. For example, a host can accidentally or maliciously
announce the default route (or any other route that it does not
own), thereby delivering traffic to the wrong destination. Another

BGP Models for Peering with Servers | 75

thing to guard against is to ensure that the ToR (or leaf) switch
never thinks the host is a transit node; that is, one with connectivity
to other nodes. That error would result in severe traffic loss because
a host is not designed to handle traffic loads of hundreds of gigabits
per second. Lastly, the router connected to the server announces
only the default route. This is to avoid pushing too many routes to
the host, which could fill up its routing table and make the host
waste precious cycles trying to run the best path algorithm every
time some route changes (for example, when a ToR switch loses
connectivity to a leaf or spine switch).

To handle all of these scenarios, we use routing policies as described
in Chapter 3. The following configuration snippet shows how we
can accomplish each of the aforementioned tasks via the use of rout‐
ing policy, as demonstrated here:

ip prefix-list ANYCAST_VIP seq 5 permit 10.1.1.1/32
ip prefix-list ANYCAST_VIP seq 10 permit 20.5.10.110/32

ip prefix-list DEFONLY seq 5 permit 0.0.0.0/0

route-map ACCEPT_ONLY_ANYCAST permit 10
 match ip address prefix-list ANYCAST_VIP

route-map ADVERTISE_DEFONLY permit 10
 match ip address prefix-list DEFONLY

neighbor server route-map ACCEPT_ONLY_ANYCAST in
neighbor server route-map ADVERTISE_DEFONLY out
neighbor server default-originate

In this configuration, the neighbor statement with the route-map
ACCEPT_ONLY_ANYCAST says that the only route advertisements
accepted from a neighbor belonging to the peer-group server are
the anycast IP addresses listed in the ANYCAST_VIP prefix-list.
Similarly, the neighbor statement with the route-map ADVER

TISE_DEFONLY specifies that BGP advertise only the default route to
any neighbor belonging to the peer-group server.

BGP Peering Schemes for Edge Servers
Now that we have established the importance of including edge
servers such as load balancers and firewalls in your routing configu‐
ration, we can look at two BGP models for doing so: dynamic neigh‐
bors and BGP unnumbered. Each model has limitations, so look over

76 | Chapter 6: BGP on the Host

the following subsections and decide which comes closest to meet‐
ing the needs in your data center.

Dynamic neighbors
Because BGP runs over TCP, as long as one of the peers initiates a
connection, the other end can remain passive, silently waiting for a
connection to come, just as a web server waits for a connection from
a browser or other client.

BGP dynamic neighbors is a feature supported in some implementa‐
tions whereby one end is typically passive. It is just told what IP sub‐
net to accept connections from, and is associated with a peer group
that controls the characteristics of the peering session.

Recall that the servers within a rack typically share a subnet with the
other servers in the same rack. As an example, let’s assume that a
group of 40 servers connected to a ToR switch are in 10.1.0.0/26
subnet. A typical configuration of BGP dynamic neighbors on a ToR
will look as follows:

neighbor servers peer-group
neighbor servers remote-as 65530
bgp listen range 10.1.0.0/26 peer-group servers

At this point, the BGP daemon will begin listening passively on port
179 (the well-known BGP port). If it receives a connection from
anyone in the 10.1.0.0/26 subnet that says it’s ASN is 65530, the BGP
daemon will accept the connection request, and a new BGP session
is established.

On the server side, the switch’s peering IP address is typically that of
the default gateway. For the subnet 10.1.0.0/26, the gateway address
is typically 10.1.0.1. Thus, the BGP configuration on the server can
be as follows:

neighbor ISL peer-group
neighbor ISL remote-as external
neighbor 10.1.0.1 peer-group ISL

At this point, the BGP daemon running on the server will initiate a
connection to the switch, and as soon as the connection is estab‐
lished, the rest of the BGP state machine proceeds as usual.

Unfortunately, the dynamic neighbors features is not currently sup‐
ported over an interface; that is, you cannot say bgp listen inter
face vlan10 peer-group servers. Nor is it possible to use the

BGP Models for Peering with Servers | 77

interface name on the server end, because the trick of using interface
names (described in Chapter 3) works only with /30 or /31 subnet
addresses, whereas what’s used here is a /26 address.

You can limit the number of peers that the dynamic neighbor model
supports via the command neighbor listen limit limit-number.
For example, by configuring bgp listen limit 20, you allow only
20 dynamic neighbors to be established at any given time.

The primary advantage of this model is that it works well with
single-attached servers, and when the servers are booted through
the Preboot Execution Environment (PXE). Figure 6-1 presents this
model.

Figure 6-1. BGP Dynamic neighbor over a shared subnet

BGP unnumbered model
Much like BGP session establishment between routers, a BGP ses‐
sion can be established between a server and a switch using BGP
unnumbered. Recall from Chapter 4 that BGP unnumbered works
in the FRRouting suite without requiring any modification in the
Linux kernel.

The model for configuration with BGP unnumbered, shown in
Figure 6-2, looks different from the dynamic neighbor version.

78 | Chapter 6: BGP on the Host

https://en.wikipedia.org/wiki/Preboot_Execution_Environment

Figure 6-2. BGP unnumbered model of peering with hosts

Unlike the shared subnet model of dynamic neighbors, the BGP
unnumbered model has no shared subnet. Just like a router, the
server’s IP address is independent of the interface and typically
assigned to the loopback address. Every server can be assigned an
independent /32 address. Because the IPv6 link local address (LLA)
is used to peer with the router, there is no need for a shared subnet.

The configuration on the switch side will look something as follows:

neighbor peer-group servers
neighbor servers remote-as external
neighbor swp1 peer-group servers
neighbor swp2 peer-group servers
...

And the configuration on the server side looks similar:

neighbor eth0 remote-as external

The main advantage of this approach is that you can build a pure
routed data center, with bridging completely eliminated. This model
also supports dual-attached servers, with no need to run any propri‐
etary multinode LACP. The main disadvantage of this approach is
that DHCPv4 or PXE-booted servers are difficult to support because
there is no routing stack during PXE-boot, but the switch doesn’t
know how to forward packets to a specific server. There are possible
solutions, but the explanation is beyond the scope of the book.

The BGP unnumbered model over a shared interface is theoretically
possible when the shared link is between a switch and group of
servers, but is currently unimplemented.

Routing Software for Hosts
If you’re well-versed in network design, you will recognize that in
reality, the BGP running on the server really needs to be just a BGP
speaker, and doesn’t have to implement a full routing protocol with

Routing Software for Hosts | 79

best-path computation, programming routes into the routing table,
and so on. Web-scale pioneers recognized this and ran software
such as ExaBGP, which only functioned as BGP speaker, for a long
time.

Today more full-featured open source routing suites such as
FRRouting and BIRD routing are available for use on Linux and
BSD servers. FRRouting supports both BGP unnumbered and
dynamic neighbors. The examples used in this chapter relied on
FRRouting.

Summary
This chapter showed how we can extend the use of BGP all the way
to the hosts. With the advent of powerful, full-featured routing
suites such as FRRouting, it is possible to configure BGP simply by
using BGP unnumbered, making it trivial to automate BGP configu‐
ration across all servers. If you cannot live with the current limita‐
tions of BGP unnumbered or you prefer a more traditional BGP
peering, BGP dynamic neighbors is an alternative solution. Further,
we showed how we could limit any damage that can be caused by
servers advertising incorrect routes into the network, advertently or
inadvertently.

80 | Chapter 6: BGP on the Host

https://github.com/Exa-Networks/exabgp
https://frrouting.org/
http://bird.network.cz/

About the Author
Dinesh G. Dutt is the Chief Scientist at Cumulus Networks. He has
been in the networking industry for the past 20 years—most of it at
Cisco Systems, where he was a Fellow. He has been involved in
enterprise and data center networking technologies, including the
design of many of the ASICs that powered Cisco’s mega-switches
such as Cat6K and the Nexus family of switches. He also has experi‐
ence in storage networking from his days at Andiamo Systems and
in the design of FCoE. He is a coauthor of TRILL and VxLAN, and
has filed for over 40 patents.

	Copyright
	Table of Contents
	Preface
	Software Used in This Book

	Chapter 1. Introduction to Data Center Networks
	Requirements of a Data Center Network
	Clos Network Topology
	Three-Tier Clos Networks
	Crucial Side Effects of Clos Networks

	Network Architecture of Clos Networks
	Server Attach Models
	Connectivity to the External World
	Support for Multitenancy (or Cloud)
	Operational Consequences of Modern Data Center Design
	Choice of Routing Protocol

	Chapter 2. How BGP Has Been Adapted to the Data Center
	How Many Routing Protocols?
	Internal BGP or External BGP
	ASN Numbering
	Private ASNs
	The Problems of Path Hunting
	ASN Numbering Model

	Best Path Algorithm
	Multipath Selection
	Slow Convergence Due to Default Timers
	Advertisement Interval
	Keepalive and Hold Timers
	Connect Timer

	Default Configuration for the Data Center
	Summary

	Chapter 3. Building an Automatable BGP Configuration
	The Basics of Automating Configuration
	Sample Data Center Network
	The Difficulties in Automating Traditional BGP
	Redistribute Routes
	Routing Policy
	Route-Maps

	Using Interface Names as Neighbors
	Summary

	Chapter 4. Reimagining BGP Configuration
	The Need for Interface IP Addresses and remote-as
	The Numbers on Numbered Interfaces
	Unnumbered Interfaces
	BGP Unnumbered
	IPv6 Router Advertisement
	RFC 5549
	Forwarding with RFC 5549
	BGP Capability to Negotiate RFC 5549 Use
	Interoperability

	A remote-as By Any Other Name
	Summary

	Chapter 5. BGP Life Cycle Management
	Useful show Commands
	Displaying BGP Session Information
	Displaying Routes Exchanged

	Connecting to the Outside World
	Scheduling Node Maintenance
	Debugging BGP
	Summary

	Chapter 6. BGP on the Host
	The Rise of Virtual Services
	Anycast Addresses

	BGP Models for Peering with Servers
	ASN Assignment
	Route Exchange Model
	BGP Peering Schemes for Edge Servers

	Routing Software for Hosts
	Summary

	About the Author

